Towards a Rule-Based Matcher Selection

  • Malgorzata Mochol
  • Anja Jentzsch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5268)


The central problems w.r.t. interoperability and data integration issues in the Semantic Web are schema and ontology matching approaches. Today it takes an expert to determine the best algorithm and a decision can usually be made only after experimentation, so as both the necessary scaling and off-the-shelf use of matching algorithms are not possible. To tackle these issues, we present a rule-based evaluation method in which the best algorithms are determined semi-automatically and the selection performs prior to the execution of an algorithm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bizer, C., Heese, R., Mochol, M., Oldakowski, R., Tolksdorf, R., Eckstein, R.: The Impact of Semantic Web Technologies on Job Recruitment Processes. In: Proc. of the Int. Conf. Wirtschaftsinformatik, pp. 1367–1383 (2005)Google Scholar
  2. 2.
    Castano, S., Ferrara, A., Montanelli, S.: Methods and Techniques for Ontology-based Semantic Interoperability in Networked Enterprise Contexts. In: Proc. of the Workshop On Enterprise Modelling and Ontologies for Interoperability (2004)Google Scholar
  3. 3.
    Castano, S., Ferrara, A., Montanelli, S., Racca, G.: Matching techniques for resource discovery in distributed systems using heterogeneous ontology descriptions. In: Proc. of the Int. Conf. on IT: Coding and Computing (ITCC 2004), pp. 360–366. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  4. 4.
    Chen, Y.: Automatic Generation of Ontology Metadata. Technical report, Diploma-Thesis, Freie Universität Berlin (April 2006)Google Scholar
  5. 5.
    Datta, L.-E., Morra, L.G., Friedlander, A.C.: Program Evaluation and Methodlogy Division. Case Study Evaluations. US General Accounting Office (1990)Google Scholar
  6. 6.
    Do, H.-H., Rahm, E.: COMA-a system for flexible combination of schema matching approaches. In: Proc. of the 28th Intl. Conf. on Very Large Databases (2002)Google Scholar
  7. 7.
    Doan, A.-H., Madhavan, J., Domingos, P., Halevy, A.: Ontology Matching: A Machine Learning Approach. In: Handbook on Ontologies, pp. 385–516. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  9. 9.
    Fernandez-Lopez, M., Gomez-Perez, A.: Overview and analysis of methodologies for building ontologies. Knowledge Engineering Review 17(2), 129–156 (2002)Google Scholar
  10. 10.
    Giuchiglia, F., Shvaiko, P.: Semantic Matching. The Knowledge Engineering Review (KER) Journal 18(3), 265–280 (2004)CrossRefGoogle Scholar
  11. 11.
    Hu, W., Cheng, G., Zheng, D., Zhong, X., Qu, Y.: The Results of Falcon-AO in the OAEI 2006 Campaign. In: Proc. of the Int. Workshop on Ontology Matching colloc. with the ISWC 2006 (2006)Google Scholar
  12. 12.
    Hartmann, J., Paslaru Bontas, E., Palma, R., Gmez-Prez, A.: DEMO - A Design Environment for Metadata About Ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 427–441. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid. In: Proc. of the 27th VLDB Conference, pp. 48–58 (2001)Google Scholar
  14. 14.
    Lemley, M.A., O’Brien, D.W.: Encouraging software reuse. Stanford Law Review 49(2), 255–304 (1997)CrossRefGoogle Scholar
  15. 15.
    Harzallah, M., Huza, M., Trichet, F.: OntoMas: a tutoring system dedicated to ontology matching. In: Proc. of the Int. Workshop on Ontology Matching colloc. with the ISWC 2006 (2006)Google Scholar
  16. 16.
    Madhavan, J., Bernstein, P.A., Domingos, P., Halevy, A.Y.: Representing and Reasoning about Mappings between Domain Models. In: Proc. of the 18th Nat. Conf. on AI and 4th Conf. on Innovative Applications of AI, pp. 80–86 (2002)Google Scholar
  17. 17.
    McGuinness, D., Fikes, R., Rice, J., Wilder, S.: The Chimaera ontology environment. In: Proc. of the 17th National Conference on AI, pp. 1123–1124 (2000)Google Scholar
  18. 18.
    Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Matching Algorithm and Its Application to Schema Matching. In: Proc. of the 18th International Conference on Data Engineering (ICDE 2002) (2002)Google Scholar
  19. 19.
    Mochol, M., Jenztsch, A., Euzenat, J.: Applying an Analytic Method for Matching Approach Selection. In: Proc. of the Int. Workshop on Ontology Matching colloc. with the ISWC 2006 (2006)Google Scholar
  20. 20.
    Paslaru, E.: Using Context Information to Improve Ontology Reuse. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520. Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Paslaru, E., Mochol, M., Tolksdorf, R.: Case Studies on Ontology Reuse. In: Proc. of the 5th International Conference on Knowledge Management (2005)Google Scholar
  22. 22.
    Poole, J., Campbell, J.: A Novel Algorithm for Matching Conceptual and Related Graphs. Conceptual Structures: Appl., Impl. and Theory, 293–307 (1995)Google Scholar
  23. 23.
    Stumme, G., Maedche, A.: FCA-MERGE: Bottom-up merging of ontologies. In: Proc. of the 17th IJCAI 2001, pp. 225–230 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Malgorzata Mochol
    • 1
  • Anja Jentzsch
    • 1
  1. 1.Freie Universität BerlinBerlinGermany

Personalised recommendations