Skip to main content

Sonar oceanography

  • Chapter
  • First Online:
Principles of Sonar Performance Modelling

Part of the book series: Springer Praxis Books ((GEOPHYS))

  • 3285 Accesses

Abstract

This is the first of four chapters dealing further with each of the four main subjects introduced in Chapter 2.The purpose is to describe them in sufficient detail to equip the reader with the necessary knowledge to carry out predictions of sonar performance in realistic situations.The first subject of the four, and that of the present chapter, is oceanography.The remaining three are underwater acoustics (see Chapter 5), sonar signal processing (Chapter 6), and detection theory (Chapter 7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ainslie, M. A. (2005) Effect of wind-generated bubbles on fixed range acoustic attenuation in shallow water at 1–4 kHz, J. Acoust. Soc. Am., 118, 3513–3523.

    Article  Google Scholar 

  • Ainslie, M. A. and McColm, J. G. (1998) A simplified formula for viscous and chemical absorption in sea water, J. Acoust. Soc. Am., 103, 1671–1672 [Letter to the Editor].

    Article  Google Scholar 

  • Amateur Geologist (www) http://www.amateurgeologist.com/content/glossary/, last accessed April 23, 2009.

  • AMS (www) http://amsglossary.allenpress.com/glossary/browse, last accessed April 23, 2009.

  • Andreeva, I. B. (1964) Scattering of sound by air bladders of fish in deep sound-scattering ocean layers, Akust. Zh., 10, 20–24. [English translation in Sov. Phys.—Acoust., 10, 17–20 (1964).].

    Google Scholar 

  • APL-UW (1994) APL-UW High-frequency Ocean Environmental Acoustic Models Handbook (APL-UW TR9407, AEAS 9501 October), Applied Physics Laboratory, University of Washington, Seattle, WA, http://staff.washington.edu/dushaw/epubs/APLTM9407.pdf, last accessed March 4, 2008.

  • Assefa, S. and Sothcott, J. (1997) Acoustic and petrophysical properties of seafloor bedrocks, SPE Formation Evaluation (pp. 157–163, September).

    Google Scholar 

  • Bachman, R. T. (1985) Acoustic and physical property relationships in marine sediment, J. Acoust. Soc. Am., 78, 616–621.

    Article  Google Scholar 

  • Bowditch, N. (1966) American Practical Navigator: An Epitome of Navigation, U.S. Naval Oceanographic Office, Washington, D.C.

    Google Scholar 

  • Bowen, W. D. and Siniff, D. B. (1999) Distribution, population biology and feeding ecology of marine mammals, in J. E. Reynolds III and S. A. Rommel (Eds.), Biology of Marine Mammals (pp. 423–484), Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Brewer, P. G., Glover, D. M., Goyet, C., and Shafer, D. K. (1995) The pH of the North Atlantic Ocean: Improvements to the global model of sound absorption, J. Geophys. Res., 100(C5), 8761–8776.

    Article  Google Scholar 

  • Brown, J., Colling, A., Park, D., Phillips, J., Rothery, D., and Wright, J. (1989) Seawater: Its Composition, Properties and Behaviour (edited by G. Bearman), Pergamon Press, Oxford.

    Google Scholar 

  • Buckingham, M. J. (2005) Compressional and shear wave properties of marine sediments: Comparisons between theory and data, J. Acoust. Soc. Am., 117, 137–152.

    Article  Google Scholar 

  • Caldeira, K. and Wickett, M. E. (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean, J. Geophys. Res., 110(C09S04), doi:10.1029/2004JC002671.

    Article  Google Scholar 

  • Carmichael, R. S. (1982) Handbook of Physical Properties of Rocks (Vol. II), CRC Press, Boca Raton, FL.

    Google Scholar 

  • Chapman, D. M. F. (1983) An improved Kirchhoff formula for reflection loss at a rough ocean surface at low grazing angles, J. Acoust. Soc. Am., 73, 520–527.

    Article  Google Scholar 

  • Christensen, N. I. and Salisbury M. H. (1975) Structure and constitution of the lower oceanic crust, Reviews of Geophysics and Space Physics, 13(1), 57–86.

    Article  Google Scholar 

  • Chu, D. and Wiebe, P. H. (2005) Measurements of sound-speed and density contrasts of zooplankton in Antarctic waters, ICES J. Marine Science, 62, 818–831.

    Article  Google Scholar 

  • Clay, C. S. and Horne, J. K. (1994). Acoustic models of fish: the Atlantic cod (Gadus morhua), J. Acoust. Soc. Am., 96, 1661–1668.

    Article  Google Scholar 

  • Cox, C. and Munk, W. (1954) Measurement of the roughness of the sea surface from photographs of the Sun’s glitter, J. Opt. Soc. Am. 44, 838–850.

    Article  Google Scholar 

  • Crocker, M. J. (Ed.) (1997) Encyclopedia of Acoustics, Wiley, New York.

    Google Scholar 

  • da Silva, A., Young, C., and Levitus, S. (1994) Toward a revised Beaufort equivalent scale, Proceedings from the COADS Winds Workshop, Kiel, Germany.

    Google Scholar 

  • da Silva, A. M., Young, C. C., and Levitus, S. (www) Estimates of wind stress and heat fluxes with bias corrections, http://www.cdc.noaa.gov/coads/Boulder/Boulder.DaSilva.pdf, last accessed December 3, 2008.

  • Dickson, A. G. and Millero, F. J. (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in sea water media, Thermodynamics of the Carbon Dioxide System in Seawater (Annex 3, report by the Carbon Dioxide Sub-panel of the Joint Panel on Oceanographic Tables and Standards, Unesco Technical Papers in Marine Science 51), UNESCO, Paris.

    Google Scholar 

  • Dobson, F. W. (1981) Review of Reference Height for and Averaging Time of Surface Wind Measurements at Sea (WMO Marine Meteorology and Related Oceanographic Activities Report No. 3), Bedford Institute of Oceanography, Canada.

    Google Scholar 

  • Doonan, I. J., Coombs R. F., and McClatchie, S. (2003) The absorption of sound in seawater in relation to the estimation of deep-water fish biomass, ICES Journal of Marine Science, 60, 1047–1055.

    Article  Google Scholar 

  • Fisher, F. H. and Simmons, V. P. (1977) Sound absorption in sea water, J. Acoust. Soc. Am., 62, 558–564.

    Article  Google Scholar 

  • Fisher, F. H. and Worcester, P. F. (1997). Essential oceanography, in M. J. Crocker (Ed.), Encyclopedia of Acoustics (pp. 381–389), Wiley, New York.

    Chapter  Google Scholar 

  • Fofonoff, N. P. and Millard, R. C. (1983) Algorithms for Computation of Fundamental Properties of Seawater (Unesco Technical Papers in Marine Science 44), UNESCO, Paris.

    Google Scholar 

  • Folk, R. L. (1954) The distinction between grain size and mineral composition in sedimentary-rock nomenclature, J. Geology, 62, 344–359.

    Article  Google Scholar 

  • Folk R. L. (1966) A review of grain-size parameters, Sedimentology, 6, 73–93.

    Article  Google Scholar 

  • Fowle, F. E. (1934) Smithsonian Physical Tables (Eighth Revised Edition), Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Francois, R. E. and Garrison, G. R. (1982a) Sound absorption based on ocean measurements. Part I: Pure water and magnesium sulfate contributions, J. Acoust. Soc. Am., 72, 896–907.

    Article  Google Scholar 

  • Francois, R. E. and Garrison, G. R. (1982b) Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption, J. Acoust. Soc. Am., 72, 1879–1890.

    Article  Google Scholar 

  • Froese, R. and Pauly D. (Eds.) (2007) FishBase (World Wide Web electronic publication). www.fishbase.org, version (01/2007), last accessed March 23, 2009.

  • Greenlaw, C. F. and Johnson, R. K. (1982) Physical and acoustical properties of zooplankton, J. Acoust. Soc. Am., 72, 1706–1710.

    Article  Google Scholar 

  • Hall, M. V. (1989) A comprehensive model of wind-generated bubbles in the ocean and predictions of the effects on sound propagation at frequencies up to 40 kHz, J. Acoust. Soc. Am., 86, 1103–1117.

    Article  Google Scholar 

  • Hamilton, E. L. (1972) Compressional-wave attenuation in marine sediments, Geophysics, 37, 620–645.

    Article  Google Scholar 

  • Hamilton, E. L. (1979) Vp/Vs and Poisson’s ratios in marine sediments and rocks, J. Acoust. Soc. Am., 66, 1093–1101.

    Article  Google Scholar 

  • Hamilton, E. L. (1980) Geoacoustic modeling of the sea floor, J. Acoust. Soc. Am., 68, 1313– 1340.

    Article  Google Scholar 

  • Hamilton, E. L. (1987) Acoustic properties of sediments, in A. Lara Sáenz, C. Ranz Guerra, and C. Carbó Fite (Eds.), Acoustics and Ocean Bottom (pp. 3–58), Consejo Superior de Investigaciones Científicas, Madrid.

    Google Scholar 

  • Hamilton, E. L. and Bachman, R. T. (1982) Sound velocity and related properties of marine sediments, J. Acoust. Soc. Am., 72, 1891–1904.

    Article  Google Scholar 

  • Haslett, R. W. G. (1962) Measurements of the dimensions of fish to facilitate calculations of echo-strength in acoustic fish detection, J. Conseil Perm. Int. Explor. Mer, 27, 261–269.

    Article  Google Scholar 

  • Horne, R. A. (1969) Marine Chemistry (pp. 32, 95, 96), Wiley, New York.

    Google Scholar 

  • IAPSO (1985) The International System of Units (SI) in Oceanography (Unesco Technical Papers in Marine Science 45), IAPSO Working Group on Symbols, Units and Nomenclature in Physical Oceanography (SUN), UNESCO, Paris.

    Google Scholar 

  • ICES (1994) Report of the ICES Advisory Committee on Fishery Management 1993 (ICES Report No. 196, February). ICES, Copenhagen.

    Google Scholar 

  • Jackson, D. R. and Richardson, M. D. (2007) High-frequency Seafloor Acoustics, Springer-Verlag, New York.

    Google Scholar 

  • Jaffe, J. S., Simonet, F., Roberts, P. L. D., and Bowles, A. E. (2007) Measurement of the acoustic reflectivity of sirenia (Florida manatees) at 171 kHz, J. Acoust. Soc. Am., 121, 158–165.

    Article  Google Scholar 

  • Jensen, F. B., Kuperman, W. A., Porter M. B., and Schmidt, H. (1994) Computational Ocean Acoustics, AIP Press, New York.

    Google Scholar 

  • Johnson, B. D. and Cooke, R. C. (1979) Bubble population and spectra in coastal waters: A photographic approach, J. Geophys Res., 84, 3761–3766.

    Article  Google Scholar 

  • Keiffer, R. S., Novarini J. C., and Norton, G. V. (1995). The impact of the background bubble layer on reverberation-derived scattering strengths in the low to moderate frequency range, J. Acoust. Soc. Am., 97, 227–234.

    Article  Google Scholar 

  • Kent, E. C. and Taylor, P. K. (1997) Choice of a Beaufort equivalent scale, J. Atmos. & Oceanic Tech., 14(2), 228–242.

    Article  Google Scholar 

  • Kibblewhite, A. C. (1989) Attenuation of sound in marine sediments: A review with emphasis on new low-frequency data, J. Acoust. Soc. Am., 86, 716–738.

    Article  Google Scholar 

  • Knijn, R. J., Boon, T. W., Heessen, H. J. L., and Hislop, J. R. G. (1993). Atlas of North Sea Fishes: Based on Bottom-trawl Survey Data for the Years 1985–1987 (ICES Report No. 194, September), ICES, Copenhagen.

    Google Scholar 

  • Krumbein, W. C. and Sloss, L. L. (1963) Stratigraphy and Sedimentation (Second Edition), Freeman, San Francisco.

    Google Scholar 

  • Lavery, A. C., Wiebe, P. H., Stanton, T. K., Lawson, G. L., Benfield, M. C., and Copley, N. (2007) Determining dominant scatterers of sound in mixed zooplankton populations, J. Acoust. Soc. Am., 122, 3304–3326.

    Article  Google Scholar 

  • Leacock, A. (2003) Properties of Water and Steam, Mechanical Science Section C, http:// newton.engj.ulst.ac.uk/agl/Download_files/Resources/New_Steam_Tables.pdf, last accessed March 4, 2008.

  • Leroy, C. C. (1968) Formulas in the calculation of underwater pressure in acoustics, J. Acoust. Soc. Am., 44, 651–654.

    Article  Google Scholar 

  • Leroy, C. C. (2001) The speed of sound in pure and neptunian water, in M. Levy, H. E. Bass, and R. R. Stern (Eds.), Handbook of Elastic Properties of Solids, Liquids and Gases (Volume IV), Academic Press, London.

    Google Scholar 

  • Leroy, C. C., Robinson S. P., and Goldsmith, M. J. (2008) A new equation for the accurate calculation of sound speed in all oceans, J. Acoust. Soc. Am., 124, 2774–2782.

    Article  Google Scholar 

  • Liebermann, L. N. (1948) The origin of sound absorption in water and sea water, J. Acoust. Soc. Am., 20, 868–873.

    Article  Google Scholar 

  • Lindau, R. (1995) A new Beaufort equivalent scale, Proceedings International COADS Workshop, Kiel, Germany: Berichte aus dem Institüt fur Meereskunde (pp. 232–252).

    Google Scholar 

  • Love, R. H. (1977) Target strength of an individual fish at any aspect, J. Acoust. Soc. Am., 62, 1397–1403.

    Article  Google Scholar 

  • Love, R. H. (1978) Resonant acoustic scattering by swimbladder-bearing fish, J. Acoust. Soc. Am., 64, 571–580.

    Article  Google Scholar 

  • Løvik, A. and Hovem, J. M. (1979) An experimental investigation of swimbladder resonance in fishes, J. Acoust. Soc. Am., 66, 850–854.

    Article  Google Scholar 

  • Ludwig, W. J., Nafe, J. E., and Drake, C. L. (1970) Seismic refraction, in A. E. Maxwell (Ed.), The Sea (Vol. 4, Part I, pp. 53–84), Wiley, New York.

    Google Scholar 

  • Lyons, A. P. and Orsi, T. H. (1998) The effect of a layer of varying density on high-frequency reflection, forward loss, and backscatter, IEEE J. Oceanic Eng., 23, 411–422.

    Article  Google Scholar 

  • Mackenzie, K. V. (1981) Nine-term equation for sound speed in the oceans, J. Acoust. Soc. Am., 70, 807–812.

    Article  Google Scholar 

  • MacLennan, D. N. and Simmonds, E. J. (1992) Fisheries Acoustics, Chapman & Hall, London.

    Google Scholar 

  • Matthäus, W. (1972) Die Viskosität die Meerwassers, Beiträge zur Meereskunde, 29, 93–107 [in German].

    Google Scholar 

  • Medwin, H. and Clay, C. S. (1998) Fundamentals of Acoustical Oceanography, Academic Press, Boston.

    Google Scholar 

  • Mellen, R. H., Scheifele, P. M., and Browning, D. G. (1987) Global Model for Sound Absorption in Sea Water, Part II: Geosecs PH Data Analysis (NUSC Technical Report 7925, May). Naval Underwater Systems Center, Newport, RI.

    Google Scholar 

  • Miller, J. H. and Potter, D. C. (2001) Active high frequency phased-array sonar for whale shipstrike avoidance: Target strength measurements, paper presented at Oceans, pp. 2104–2107.

    Google Scholar 

  • Millero, F. J. (2006) Chemical Oceanography (Third Edition), CRC Taylor & Francis, Boca Raton, FL.

    Google Scholar 

  • Morfey, C. L. (2001) Dictionary of Acoustics, Academic Press, San Diego.

    Google Scholar 

  • Nero, R. W., Thompson C. H., and Jech, J. M. (2004) In situ acoustic estimates of the swimbladder volume of Atlantic herring (Clupea harengus), ICES J. Marine Sciences, 61, 323–337.

    Article  Google Scholar 

  • Neumann, G. and Pierson, W. J. (1957) A detailed comparison of theoretical wave spectra and wave forecasting methods, Deutsch. Hydrogr. Z., 10(3), 73–92.

    Article  Google Scholar 

  • Neumann, G. and Pierson, W. J. (1966) Principles of Physical Oceanography, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • NIST (www) CODATA internationally recommended values of the fundamental physical constants, http://physics.nist.gov/cuu/constants, last accessed March 8, 2008.

  • NOAA (www) Guide to: sea state, wind and clouds, http://pajk.arh.noaa.gov/forecasts/ beaufort/beaufort.html, last accessed July 7, 2009.

  • NODC (www) WMO Code Tables, National Oceanographic Data Center, http://www.nodc.noaa.gov/GTSPP/document/codetbls/wmocode.html, last accessed July 7, 2009.

  • Novarini, J. C., Keiffer, R. S., and Norton, G. V. (1998) A model for variations in the range and depth dependence of the sound speed and attenuation induced by bubble clouds under wind-driven sea surfaces, IEEE J. Oceanic Eng., 23(4), October.

    Google Scholar 

  • NPL (2007a) Speed of Sound in Sea-Water and Speed of Sound in Pure Water (Acoustics Technical Guides), http://www.npl.co.uk/acoustics/techguides/, last accessed July 29, 2007.

  • NPL (2007b) Calculation of Absorption of Sound in Seawater (Acoustics Technical Guides), http://www.npl.co.uk/acoustics/techguides/, last accessed July 29, 2007.

  • OBIS (www) Ocean Biogeographic Information System, http://www.iobis.org, last accessed December 3, 2008.

  • Pabst, D. A., Rommel, S. A., and McLellan, W. A. (1999) The functional morphology of marine mammals, in J. E. Reynolds III and S. A. Rommel (Eds.), Biology of Marine Mammals (pp. 15–72), Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Pierce, A. D. (1989) Acoustics: An Introduction to Its Physical Principles and Applications, American Institute of Physics, New York.

    Google Scholar 

  • Pierson, W. J. and Moskowitz, L. (1964) A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii, J. Geophys. Res., 69(24), 5181–5190.

    Article  Google Scholar 

  • Pierson, W. J. Jr., Neumann, G., and James, R. W. (1967) Practical Methods for Observing and Forecasting Ocean Waves by Means of Wave Spectra and Statistics (H O Pub. No. 603), U.S. Naval Oceanographic Office.

    Google Scholar 

  • Potty, G. R., Miller, J. H., and Lynch, J. F. (2003) Inversion for sediment geoacoustic properties at the New England Bight, J. Acoust. Soc. Am., 114, 1874–1887.

    Article  Google Scholar 

  • Pouliquen, E. and Lyons, A. P. (2002) Backscattering from bioturbated sediments at very high frequency, IEEE J. Oceanic Eng., 27, 388–402.

    Article  Google Scholar 

  • Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U., Shepherd, J., Turley, C., and Watson, A. (2005). Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide (Royal Society Policy Document 12/05, June), Royal Society, London, http://royalsociety.org/displaypagedoc.asp?id=13539, last accessed March 23, 2009.

  • Reynolds, III, J. E. and Rommel, S. A. (1999) Biology of Marine Mammals, Smithsonian Institution Press, Washington.

    Google Scholar 

  • Robinson, I. S. (2004) Measuring the Oceans from Space: The Principles and Methods of Satellite Oceanography, Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Sandwell, D. T., Smith, W. H. F., Smith, S. M., and Small, C. (www) Measured and estimated seafloor topography, http://topex.ucsd.edu/marine_topo, last accessed February 16, 2008.

  • Schneider, H. G., Thiele R., and Wille, P. C. (1985) Measurement of sound absorption in low salinity water of the Baltic Sea, J. Acoust. Soc. Am., 77, 1409–1412.

    Article  Google Scholar 

  • Shepard, F. P. (1954) Nomenclature based on sand–silt–clay ratios, J. Sedimentary Petrology, 24(3), 151–158.

    Google Scholar 

  • Simmonds, E. J. an MacLennan, D. N. (2005) Fisheries Acoustics (Second Edition), Blackwell, Oxford.

    Book  Google Scholar 

  • Smith, W. H. F. and Sandwell, D. T. (1997) Global sea floor topography from satellite altimetry and ship depth soundings, Science, 277, 1956–1962.

    Article  Google Scholar 

  • Sparholt, H. (1990) An estimate of the total biomass of fish in the North Sea, with special emphasis on fish eating species not included in the MSVPA model, ICES C. M. 1987/G:52: An estimate of the total biomass in the North Sea, J. Cons. Int. Explor. Mer, 46, 200–210.

    Google Scholar 

  • Stanton, T. K., Nash, R. D. M., Eastwood R. L., and Nero, R. W. (1987) A field examination of acoustical scattering from marine organisms at 70 kHz, IEEE J. Oceanic Eng., OE- 12, 339–348.

    Article  Google Scholar 

  • Stephens, R. W. B. and Bate, A. E. (1966) Acoustics & Vibrational Physics, Edward Arnold, London.

    Google Scholar 

  • Sternlicht, D. D. and de Moustier, C. P. (2003) Time-dependent seafloor acoustic backscatter (10–100 kHz), J. Acoust. Soc. Am., 114, 2709–2725.

    Article  Google Scholar 

  • Sündermann, J. (1986) Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology (New Series, editors-in-chief K.-H. Hellwege and O. Madelung, Group V: Geophysics and Space Research, Vol. 3a, Oceanography), Springer-Verlag, Berlin.

    Google Scholar 

  • Tang, D. (2004) Fine-scale measurements of sediment roughness and subbottom variability, IEEE J. Oceanic Eng., 29, 929–939.

    Article  Google Scholar 

  • Tang, D., Briggs, K. B., Williams, K. L., Jackson, D. R., Thorsos E. I., and Percival, D. B. (2002) Fine-scale volume heterogeneity measurements in sand, IEEE J. Oceanic Eng., 27, 546–560.

    Article  Google Scholar 

  • Taylor, B. N. (1995) Guide for the Use of the International System of Units (SI) (NIST Special Publication 811, 1995 Edition), U.S. Department of Commerce, National Institute of Standards and Technology, U.S. Government Printing Ofice, Washington, D.C.

    Google Scholar 

  • Ternon, J. F., Oudot, C., Gourlaouen, V., and Diverres, D. (2001) The determination of pHT in the equatorial Atlantic Ocean and its role in the sound absorption modeling in seawater, J. Marine Systems, 30, 67–87.

    Article  Google Scholar 

  • Thorpe, S. (1982) On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in air–sea gas transfer, Phil. Trans. Roy. Soc. A, 304, 155–210.

    Article  Google Scholar 

  • Trevorrow, M. V. (2003) Measurements of near-surface bubble plumes in the open ocean with implications for high-frequency sonar performance, J. Acoust. Soc. Am., 114, 2672–2684.

    Article  Google Scholar 

  • Udden, J. A. (1914) Mechanical composition of clastic sediments, Bull. Geol. Soc. Am., 25, 655–744.

    Google Scholar 

  • van Moll, C. A. M., Ainslie, M. A., and van Vossen, R. (2009) A simple and accurate formula for the absorption of sound in seawater, IEEE J. Oceanic Eng., 34(4), 610–616.

    Article  Google Scholar 

  • Wedborg, M., Turner, D. R., Anderson, L. G., and Dryssen, D. (1999) Determination of pH, in Methods of Seawater Analysis (edited by K. Grasshoff, K. Kremling, and M. Ehrhardt), Wiley, New York.

    Google Scholar 

  • Weisstein (www) E. W. Weisstein, Ellipsoid, http://mathworld.wolfram.com/Ellipsoid.html, last accessed May 19, 2006.

  • Wentworth, C. K. (1922) A scale of grade and class terms for clastic sediments, J. Geology, 30, 377–392.

    Article  Google Scholar 

  • Weston, D. E. (1967) Sound propagation in the presence of bladder fish, in V. M. Albers (Ed.), Underwater Acoustics, Vol II: Proceedings 1966 NATO Advanced Study Institute, Copenhagen (pp 55–88), Plenum Press, New York.

    Google Scholar 

  • Weston, D. E. (1995) Assessment Methods for Biological Scattering and Attenuation in Ocean Acoustics (BAeSEMA Report C3305/7/TR-1, April), BAeSEMA, Esher, U.K.

    Google Scholar 

  • WMO (1970) The Beaufort Scale of Wind Force: Technical and Operational Aspects (reports on marine science affairs, Report No. 3, submitted by the President of the Commission for Maritime Meteorology to the WMO Executive Committee at its 22nd Session), Secretariat of the World Meteorological Organization, Geneva.

    Google Scholar 

  • WOA (1999) World Ocean Atlas 1998 (WOA98) (CD-ROM documentation version 1.0), Ocean Climate Laboratory, National Oceanographic Data Center (NODC), Silver Springs, MD.

    Google Scholar 

  • Worthington, L. V. (1981) The water masses of the world ocean: Some results of a fine-scale census, in B. A. Warren and C. Wunsch (Eds.), Evolution of Physical Oceanography (pp. 42–69), MIT Press, Cambridge, MA.

    Google Scholar 

  • Yang, J. (1982) An estimate of the fish biomass in the North Sea, J. Cons. Int. Explor. Mer, 40, 161–172.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ainslie, M.A. (2009). Sonar oceanography. In: Principles of Sonar Performance Modelling. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87662-5_4

Download citation

Publish with us

Policies and ethics