Skip to main content

Introduction

  • Chapter
  • First Online:
Principles of Sonar Performance Modelling

Part of the book series: Springer Praxis Books ((GEOPHYS))

  • 3325 Accesses

Abstract

Sonar can be thought of as a kind of underwater radar, using sound instead of radio waves to interrogate its surroundings. But what is special about sound in the sea? Radio waves travel unhindered in air, whereas sound energy is absorbed relatively quickly. In water, the opposite is the case: low absorption and the presence of natural oceanic waveguides combine to permit propagation of sound over thousands of kilometers, whereas the sea is opaque to most of the electromagnetic spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anon. (wp,a) Paul Langevin, available at http://en.wikipedia.org/wiki/Paul_Langevin (last accessed October 21, 2009).

  • Anon. (wp, b) Paul Painlevé, available at http://en.wikipedia.org/wiki/Paul_painleve (last accessed October 21, 2009).

  • Au, W. W. L. (1993) The Sonar of Dolphins, Springer, New York.

    Book  Google Scholar 

  • Bell, T. G. (1962) Sonar and Submarine Detection, U.S. Navy Underwater Sound Lab. Rep. 545.

    Google Scholar 

  • Belloc, M. G. (1929a) La Croisière de la Tanche en Août 1927, Rapports et Procès-verbaux des Réunions, Conseil P, 55, 139–150 [in French].

    Google Scholar 

  • Belloc, M. G. (1929b) La Croisière de la Tanche en Juillet–Août 1928, Rapports et Procès-verbaux des Réunions, Conseil P, 62, 66–78 [in French].

    Google Scholar 

  • Bjørnø, L. (2003) Features of underwater acoustics from Aristotle to our time, Acoustical Physics, 49(1), 24–30.

    Article  Google Scholar 

  • Burdic, W. S. (1984) Underwater Acoustic Systems Analysis, Prentice-Hall, Englewood Cliffs NJ.

    Google Scholar 

  • Colladon, J.-D. and Sturm, J. C. F. (1827). Mémoire sur la compression des Liquides, Annales de Chimie et de Physique [in French].

    Google Scholar 

  • Collins, M. D., McDonald, B. E., Heaney K. D., and Kuperman, W. A. (1995) Three- dimensional effects in global acoustics, J. Acoust. Soc. Am., 97, 1567–1575.

    Article  Google Scholar 

  • Cushing, D. (1973) The Detection of Fish (International Series of Monographs in Pure and Applied Biology Vol. 52), Pergamon.

    Google Scholar 

  • DiNapoli, F. R. (1971) Fast Field Program for Multilayered Media (NUSC Technical Report 4103), Naval Underwater Systems Center.

    Google Scholar 

  • Drubba, H. and Rust, H. H. (1954) On the first echo-sounding experiment, Annals of Science, 10(1), March, 28–32.

    Article  Google Scholar 

  • Etter, P. C. (2003) Underwater Acoustics Modeling and Simulation: Principles, Techniques and Applications, Spon Press, New York.

    Book  Google Scholar 

  • Ewing, M. and Worzel, J. L. (1948) Long-range sound transmission, Geological Society of America Memoir, 27.

    Google Scholar 

  • Fernandes, P. G., Gerlotto, F., Holliday, D. V., Nakken O., and Simmonds, E. J. (2002) Acoustic applications in fisheries science: The ICES contribution, ICES Marine Science Symposia, 215, 483–492.

    Google Scholar 

  • Fisher, F. H. (1958) Effect of high pressure on sound absorption and chemical equilibrium, J. Acoust. Soc. Am., 30, 442–448.

    Article  Google Scholar 

  • Fisher, F. H. and Simmons, V. P. (1975) Discovery of boric acid as cause of low frequency sound absorption in the ocean, IEEE Oceans ’75, 21–24.

    Google Scholar 

  • Fisher, F. H. and Simmons, V. P. (1977) Sound absorption in sea water, J. Acoust. Soc. Am., 62, 558–564

    Article  Google Scholar 

  • Girard, M. (1877) Le son dans l’air et dans l’eau, La Nature, Revue des Sciences et de leurs applications aux arts et à l’industrie (pp 247–250), G. Masson, Paris [in French].

    Google Scholar 

  • Godin, O. A. and Palmer, D. R. (Eds.) (2008) History of Russian Underwater Acoustics, World Scientific, Hackensack, NJ.

    Google Scholar 

  • Goncharov, V. V. (2008) The development of sound propagation theory in the USSR and in Russia, in O. A. Godin and D. R. Palmer (Eds.); History of Russian Underwater Acoustics (pp. 71–120), World Scientific, Hackensack, NJ.

    Chapter  Google Scholar 

  • Hackmann, W. (1984) Seek & Strike: Sonar, Anti-submarine Warfare and the Royal Navy 1914–54, HM Stationery Office, London.

    Google Scholar 

  • Hackmann, W. (2000) Asdics at war, IEE Review, 15–19.

    Article  Google Scholar 

  • Hayes, H. C. (1920) Detection of submarines, Proc. Amer. Phil. Soc., LXIX, March 19, 1–47.

    Google Scholar 

  • Hersey, J. B. (1977) A chronicle of man’s use of ocean acoustics, Oceanus, 20(2), 8–21.

    Google Scholar 

  • Hersey, J. B. and Backus, R. H. (1962) Sound scattering by marine organisms, in M. N. Hill (Ed.), The Sea, Ideas and Observations on Progress in the Study of the Seas, Vol. 1: Physical Oceanography (pp. 498–539), Interscience, New York.

    Google Scholar 

  • Holbrow, C. H. (2006) Scientists, security, and lessons from the cold war, Physics Today, 59(7), 39–44.

    Article  Google Scholar 

  • Horton, J. W. (1959) Fundamentals of SONAR (Second Edition). United States Naval Institute, Annapolis.

    Google Scholar 

  • Hunt, F. V. (1954, reprinted 1982) Electroacoustics: The Analysis of Transduction, and Its Historical Background, American Institute of Physics, New York.

    Google Scholar 

  • Hunt, F. V. (1992) Origins of Acoustics, Acoustical Society of America, New York.

    Google Scholar 

  • Jensen, F. B., Kuperman, W. A., Porter, M. B., and Schmidt, H. (1994) Computational Ocean Acoustics, American Institute of Physics, New York.

    Google Scholar 

  • Klein, E. (1968) Underwater sound and naval acoustical research and application before 1939, J. Acoust. Soc. Am., 43, 931–947.

    Article  Google Scholar 

  • Kuperman, W. A. and Lynch, J. F. (2004). Shallow-water acoustics, Physics Today, October, 55–61.

    Article  Google Scholar 

  • Kuwahara, S. (1939) Velocity of sound in sea-water and calculation of the velocity for use in sonic sounding, Hydrographic Review, 16, 123–140.

    Google Scholar 

  • Lasky, M. (1977) Review of undersea acoustics to 1950, J. Acoust. Soc. Am., 61, 283–297.

    Article  Google Scholar 

  • Leonard, R. W., Combs, P. C., and Skidmore Jr., L. R. (1949) Attenuation of sound in “synthetic sea water”, J. Acoust. Soc. Am., 21, 63.

    Google Scholar 

  • Lichte, H. (1919) Über den Einfluß horizontaler Temperaturschichtung des Seewassers auf die Reichweite von Unterwasserschallsignalen, Physikalische Zeitschrift, 17, 385–389 [in German].

    Google Scholar 

  • Liebermann, L. N. (1948) The origin of sound absorption in water and sea water, J. Acoust. Soc. Am., 20, 868–873.

    Article  Google Scholar 

  • Liebermann, L. N. (1949) Sound propagation in chemically active media, Phys. Rev., 76, 1520.

    Google Scholar 

  • MacCurdy, E. (1942) The Notebooks of Leonardo da Vinci (Chap. X), Garden City Publishing, New York.

    Google Scholar 

  • Marcum, J. I. (1947) A Statistical Theory of Target Detection by Pulsed Radar (Research memorandum RM-754), The RAND Corporation.

    Google Scholar 

  • Marcum, J. I. (1948) A Statistical Theory of Target Detection by Pulsed Radar: Mathematical Appendix (Research memorandum RM-753), The RAND Corporation.

    Google Scholar 

  • Matthews, D. J. (1927, reprinted 1939) Tables of the Velocity of Sound in Pure Water and Sea Water for Use in Echo-sounding and Sound-ranging (H. D. 282). Hydrographic Department, The Admiralty, London.

    Google Scholar 

  • Maury, M. F. (1861, reprinted 1963) The Physical Geography of the Sea, and Its Meteorology (Eighth Edition). Harvard University Press.

    Book  Google Scholar 

  • Medwin, H. (1975) Speed of sound in water: A simple equation for realistic parameters, J. Acoust. Soc. Am., 58, 1318–1319.

    Article  Google Scholar 

  • Mellen, R. H., Scheifele, P. M., and Browning, D. G. (1987) Global Model for Sound Absorption in Sea Water, Naval Underwater Systems Center, Newport.

    Google Scholar 

  • Muller, R. A. (www) Government Secrets of the Oceans, Atmosphere, and UFOs, University of California at Berkeley, available at http://muller.lbl.gov/teaching/Physics10/old%20physics%2010/chapters%20(old)/9-SecretsofUFOs.html (last accessed September 29, 2008).

  • Munk, W. H., Spindel, R. C., Baggeroer, A., and Birdsall, T. G. (1994) The Heard Island Feasibility Test, J. Acoust. Soc. Am., 96, 2330–2342.

    Article  Google Scholar 

  • Munk, W., Worcester, P., and Wunsch, C. (1995) Ocean Acoustic Tomography, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Newman P. G. and Rozycki, G. S. (1998) The history of ultrasound, Surgical Clinics of America, 78(2), 179–195.

    Article  Google Scholar 

  • Pekeris, C. L. (1948) Theory of propagation of explosive sound in shallow water, Geol. Soc. Amer. Mem., 27.

    Google Scholar 

  • Rice, S. O. (1948) Statistical properties of a sine wave plus random noise, Bell Syst. Tech. J., 109–157,January.

    Google Scholar 

  • Richardson, W. J. Greene, C. R., Malme, C. I., and Thomson, D. H. (1995) Marine Mammals and Noise, Academic Press, San Diego.

    Google Scholar 

  • Schulkin, M. and Marsh, H. W. (1962) Sound absorption in sea water, J. Acoust. Soc. Am., 34, 864–865.

    Article  Google Scholar 

  • Simmons, V. P. (1975) Investigation of the 1 kHz sound absorption in sea water, PhD thesis, University of California, San Diego.

    Google Scholar 

  • Spitzer, L. (1946) Physics of Sound in the Sea (NAVMAT P-9675, Summary Technical Report of Division 6, Volume 8). National Defense Research Committee, Washington, D.C. [Reprinted by Department of the Navy Headquarters Naval Material Command, Washington, D.C., 1969.]

    Google Scholar 

  • Stafford, K. M., Fox, C. G., and Clark, D. S. (1998) Long-range detection and localization of blue whale calls in the northeast Pacific Ocean, J. Acoust. Soc. Am., 104, 3616–3625.

    Article  Google Scholar 

  • Stansfield, D. (1991) Underwater Electroacoustic Transducers, Bath University Press, Bath.

    Google Scholar 

  • Stifler Jr., W. W. and Saars, W. F. (1948) SOFAR, Electronics, 21, 98–101.

    Google Scholar 

  • Swerling, P. (1954) Probability of Detection for Fluctuating Targets (Research Memorandum RM-1217), The RAND Corporation.

    Google Scholar 

  • Tappert, F. D. (1977) The parabolic approximation method, in J. Keller and J. S. Papadakis (Eds.), Wave Propagation and Underwater Acoustics (pp. 224–287), Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Thorp, W. H. (1967) Analytic description of the low-frequency attenuation, J. Acoust. Soc. Am., 42, 270.

    Google Scholar 

  • Urick, R. J. (1967) Principles of Underwater Sound for Engineers, McGraw-Hill, New York.

    Google Scholar 

  • Urick, R. J. (1975). Principles of Underwater Sound for Engineers (Second Edition), McGraw-Hill, New York.

    Google Scholar 

  • Urick, R. J. (1983) Principles of Underwater Sound (Third Edition), Peninsula, Los Altos, CA.

    Google Scholar 

  • Waller, A. (1989) Unsung Genius: Canadian Reginald Fessenden pioneered radio, invented sonar and laid the groundwork for television. Why has his own country ignored him? Equinox, 44, March/April.

    Google Scholar 

  • Weaver, R. L. and McAndrew, J. (1995) The Roswell Report: Fact versus Fiction in the New Mexico Desert (Accession No. ADA326148), Defense Technical Information Center.

    Google Scholar 

  • Weston, D. E. (1959) Guided propagation in a slowly varying medium, Proc. Royal Society, LXXIII, 365–384.

    Google Scholar 

  • Wilson, O. B. and Leonard, R. W. (1954) Measurements of sound absorption in aqueous salt solutions by a resonator method, J. Acoust. Soc. Am., 26, 223–226.

    Article  Google Scholar 

  • Wood, A. B. (1965) From Board of Invention and Research to Royal Naval Scientific Service, Journal of the Royal Naval Scientific Service, 20, Jul, No. 4 (A. B. Wood, O.B.E., D.Sc., Memorial Number), 16–97 (200–281).

    Google Scholar 

  • Yeager, E., Fisher, F. H., Miceli, J., and Bressel, R. (1973) Origin of the low-frequency sound absorption in sea water, J. Acoust. Soc. Am., 53, 1705–1707.

    Article  Google Scholar 

  • Zhurkovich, M. V. (2008) Hydroacoustics: What is it?, in O. A. Godin and D. R. Palmer (Eds.), History of Russian Underwater Acoustics (pp. 3–6), World Scientific, Hackensack, NJ.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ainslie, M.A. (2009). Introduction. In: Principles of Sonar Performance Modelling. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87662-5_1

Download citation

Publish with us

Policies and ethics