Extended Null-Move Reductions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5131)


In this paper we review the conventional versions of null-move pruning, and present our enhancements which allow for a deeper search with greater accuracy. While the conventional versions of null-move pruning use reduction values of R ≤ 3, we use an aggressive reduction value of R = 4 within a verified adaptive configuration which maximizes the benefit from the more aggressive pruning, while limiting its tactical liabilities. Our experimental results using our grandmaster-level chess program, Falcon, show that our null-move reductions (NMR) outperform the conventional methods, with the tactical benefits of the deeper search dominating the deficiencies. Moreover, unlike standard null-move pruning, which fails badly in zugzwang positions, NMR is impervious to zugzwangs. Finally, the implementation of NMR in any program already using null-move pruning requires a modification of only a few lines of code.


Test Suite Conventional Version Depth Reduction Aggressive Reduction Total Node Count 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akl, S.G., Newborn, M.M.: The principal continuation and the killer heuristic. In: Proceedings of the 5th Annual ACM Computer Science Conference, pp. 466–473. ACM Press, Seattle (1977)Google Scholar
  2. 2.
    Anantharaman, T.S.: Extension heuristics. ICCA Journal 14(2), 47–65 (1991)MathSciNetGoogle Scholar
  3. 3.
    Beal, D.F.: Experiments with the null move. In: Beal, D.F. (ed.) Advances in Computer Chess 5, pp. 65–79. Elsevier Science Publishers, Amsterdam (1989)Google Scholar
  4. 4.
    Beal, D.F., Smith, M.C.: Quantification of search extension benefits. ICCA Journal 18(4), 205–218 (1995)Google Scholar
  5. 5.
    Berliner, H.J.: Chess as Problem Solving: The Development of a Tactics Analyzer. Ph.D. thesis, Carnegie-Mellon University, Pittsburgh, PA (1974)Google Scholar
  6. 6.
    Birmingham, J.A., Kent, P.: Tree-searching and tree-pruning techniques. In: Clarke, M.R.B. (ed.) Advances in Computer Chess 1, pp. 89–107. Edinburgh University Press, Edinburgh (1977)Google Scholar
  7. 7.
    Björnsson, Y., Marsland, T.: Multi-cut pruning in alpha-beta search. In: Proceedings of the 1st International Conference on Computers and Games, pp. 15–24 (1998)Google Scholar
  8. 8.
    Björnsson, Y., Marsland, T.: Multi-cut alpha-beta-pruning in game-tree search. Theoretical Computer Science 252(1-2), 177–196 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Campbell, M.S., Marsland, T.A.: A comparison of minimax tree search algorithms. Artificial Intelligence 20(4), 347–367 (1983)zbMATHCrossRefGoogle Scholar
  10. 10.
    David-Tabibi, O., Netanyahu, N.S.: Verified null-move pruning. ICGA Journal 25(3), 153–161 (2002)Google Scholar
  11. 11.
    David-Tabibi, O., Felner, A., Netanyahu, N.S.: Blockage detection in pawn endings. In: van den Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846, pp. 187–201. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Diepeveen, V.: Private communication (2008)Google Scholar
  13. 13.
    Donninger, C.: Null move and deep search: Selective search heuristics for obtuse chess programs. ICCA Journal 16(3), 137–143 (1993)Google Scholar
  14. 14.
    Feist, M.: The 9th World Computer-Chess Championship: Report on the tournament. ICCA Journal 22(3), 155–164 (1999)Google Scholar
  15. 15.
    Feldmann, R.: Fail high reductions. In: van den Herik, H.J., Uiterwijk, J.W.H.M. (eds.) Advances in Computer Chess 8, pp. 111–128. Universiteit Maastricht (1996)Google Scholar
  16. 16.
    Goetsch, G., Campbell, M.S.: Experiments with the null-move heuristic. In: Marsland, T.A., Schaeffer, J. (eds.) Computers, Chess, and Cognition, pp. 159–168. Springer, New York (1990)Google Scholar
  17. 17.
    Gillogly, J.J.: The technology chess program. Artificial Intelligence 3(1-3), 145–163 (1972)zbMATHCrossRefGoogle Scholar
  18. 18.
    Hammilton, S., Garber, L.: Deep Blue’s hardware-software synergy. IEEE Computer 30(10), 29–35 (1997)Google Scholar
  19. 19.
    Heinz, E.A.: Extended futility pruning. ICCA Journal 21(2), 75–83 (1998)MathSciNetGoogle Scholar
  20. 20.
    Heinz, E.A.: Adaptive null-move pruning. ICCA Journal 22(3), 123–132 (1999)Google Scholar
  21. 21.
    Hsu, F.-h.: IBM’s DEEP BLUEchess grandmaster chips. IEEE Micro 19(2), 70–80 (1999)CrossRefGoogle Scholar
  22. 22.
    Nelson, H.L.: Hash tables in CRAY BLITZ. ICCA Journal 8(1), 3–13 (1985)Google Scholar
  23. 23.
    Newborn, M.M.: Computer Chess. Academic Press, New York (1975)zbMATHGoogle Scholar
  24. 24.
    Plenkner, S.: A null-move technique impervious to zugzwang. ICCA Journal 18(2), 82–84 (1995)Google Scholar
  25. 25.
    Reinefeld, A.: An improvement to the Scout tree-search algorithm. ICCA Journal 6(4), 4–14 (1983)Google Scholar
  26. 26.
    Schaeffer, J.: The history heuristic. ICCA Journal 6(3), 16–19 (1983)Google Scholar
  27. 27.
    Scott, J.J.: A chess-playing program. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4, pp. 255–265. Edinburgh University Press, Edinburgh (1969)Google Scholar
  28. 28.
    Slagle, J.R.: Artificial Intelligence: The Heuristic Programming Approach. McGraw-Hill, New York (1971)Google Scholar
  29. 29.
    Slate, D.J., Atkin, L.R.: Chess 4.5 – The Northwestern University chess program. In: Frey, P.W. (ed.) Chess Skill in Man and Machine, 2nd edn., pp. 82–118. Springer, New York (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of Computer ScienceBar-Ilan UniversityRamat-GanIsrael
  2. 2.Center for Automation ResearchUniversity of MarylandCollege ParkUSA

Personalised recommendations