Skip to main content

The Network of Reference Frames Theory: A Synthesis of Graphs and Cognitive Maps

  • Conference paper
Spatial Cognition VI. Learning, Reasoning, and Talking about Space (Spatial Cognition 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5248))

Included in the following conference series:

Abstract

The network of reference frames theory explains the orientation behavior of human and non-human animals in directly experienced environmental spaces, such as buildings or towns. This includes self-localization, route and survey navigation. It is a synthesis of graph representations and cognitive maps, and solves the problems associated with explaining orientation behavior based either on graphs, maps or both of them in parallel. Additionally, the theory points out the unique role of vista spaces and asymmetries in spatial memory. New predictions are derived from the theory, one of which has been tested recently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bennett, A.T.D.: Do animals have cognitive maps? Journal of Experimental Biology 199, 219–224 (1996)

    Google Scholar 

  2. Byrne, P., Becker, S., Burgess, N.: Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychological Review 114, 340–375 (2007)

    Article  Google Scholar 

  3. Cheng, K., Newcombe, N.S.: Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin & Review 12, 1–23 (2005)

    Google Scholar 

  4. Chown, E., Kaplan, S., Kortenkamp, D.: Prototypes location, and associative networks (PLAN): Towards a unified theory of cognitive mapping. Cognitive Science 19, 1–51 (1995)

    Article  Google Scholar 

  5. Ekstrom, A., Kahana, M., Caplan, J., Fields, T., Isham, E., Newman, E., Fried, I.: Cellular networks underlying human spatial navigation. Nature 425, 184–187 (2003)

    Article  Google Scholar 

  6. Fujita, N., Klatzky, R.L., Loomis, J.M., Golledge, R.G.: The encoding-error model of pathway completion without vision. Geographical Analysis 25, 295–314 (1993)

    Google Scholar 

  7. Gallistel, C.R.: The organization of learning. MIT Press, Cambridge (1990)

    Google Scholar 

  8. Hamilton, D.A., Driscoll, I., Sutherland, R.J.: Human place learning in a virtual Morris water task: some important constraints on the flexibility of place navigation. Behavioural Brain Research 129, 159–170 (2002)

    Article  Google Scholar 

  9. Hegarty, M., Waller, D.: Individual differences in spatial abilities. In: Shah, P., Miyake, A. (eds.) The Cambridge Handbook of Visuospatial Thinking, pp. 121–169. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  10. Hein, A., Held, R.: A neural model for labile sensorimotor coordination. In: Bernard, E.E., Kare, M.R. (eds.) Biological prototypes and synthetic systems, vol. 1, pp. 71–74. Plenum, New York (1962)

    Google Scholar 

  11. Hirtle, S.C., Jonides, J.: Evidence of hierarchies in cognitive maps. Memory & Cognition 13, 208–217 (1985)

    Google Scholar 

  12. Holmes, M.C., Sholl, M.J.: Allocentric coding of object-to-object relations in overlearned and novel environments. Journal of Experimental Psychology: Learning, Memory and Cognition 31, 1069–1078 (2005)

    Article  Google Scholar 

  13. Huttenlocher, J., Hedges, L.V., Duncan, S.: Categories and particulars: prototype effects in estimating spatial location. Psychological Review 98, 352–376 (1991)

    Article  Google Scholar 

  14. Janzen, G.: Memory for object location and route direction in virtual large-scale space. The Quarterly Journal of Experimental Psychology 59, 493–508 (2006)

    Article  Google Scholar 

  15. Klatzky, R.L.: Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In: Freska, C., Habel, C., Wender, K.F. (eds.) Spatial cognition - An interdisciplinary approach to representation and processing of spatial knowledge, pp. 1–17. Springer, Berlin (1998)

    Google Scholar 

  16. Kuipers, B.: The spatial semantic hierarchy. Artificial Intelligence 119, 191–233 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Loomis, J.M., Klatzky, R.L., Golledge, R.G., Philbeck, J.W.: Human navigation by path integration. In: Golledge, R.G. (ed.) Wayfinding behavior, pp. 125–151. John Hopkins Press, Baltimore (1999)

    Google Scholar 

  18. MacFarlane, D.A.: The role of kinesthesis in maze learning. University of California Publications in Psychology 4 277-305 (1930); (cited from Spada, H. (ed.) Lehrbuch allgemeine Psychologie. Huber, Bern (1992)

    Google Scholar 

  19. McNaughton, B.L., Leonard, B., Chen, L.: Cortical-hippocampal interactions and cognitive mapping: A hypothesis based on reintegration of parietal and inferotemporal pathways for visual processing. Psychbiology 17, 230–235 (1989)

    Google Scholar 

  20. Mallot, H.: Spatial cognition: Behavioral competences, neural mechanisms, and evolutionary scaling. Kognitionswissenschaft 8, 40–48 (1999)

    Article  Google Scholar 

  21. Meilinger, T., Hölscher, C., Büchner, S.J., Brösamle, M.: How Much Information Do You Need? Schematic Maps in Wayfinding and Self Localisation. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition V, pp. 381–400. Springer, Berlin (2007)

    Google Scholar 

  22. Meilinger, T., Knauff, M., Bülthoff, H.H.: Working memory in wayfinding - a dual task experiment in a virtual city. Cognitive Science 32, 755–770 (2008)

    Article  Google Scholar 

  23. Meilinger, T., Riecke, B.E., Bülthoff, H.H.: Orientation Specificity in Long-Term-Memory for Environmental Spaces (submitted)

    Google Scholar 

  24. Moeser, S.D.: Cognitive mapping in a complex building. Environment and Behavior 20, 21–49 (1988)

    Article  Google Scholar 

  25. Montello, D.R.: Spatial orientation and the angularity of urban routes: A field study. Environment and Behavior 23, 47–69 (1991)

    Article  Google Scholar 

  26. Montello, D.R.: Scale and multiple psychologies of space. In: Frank, A.U., Campari, I. (eds.) Spatial information theory: A theoretical basis for GIS, pp. 312–321. Springer, Berlin (1993)

    Google Scholar 

  27. Montello, D.R., Pick, H.L.: Integrating knowledge of vertically aligned large-scale spaces. Environment and Behavior 25, 457–484 (1993)

    Article  Google Scholar 

  28. Mou, W., Xiao, C., McNamara, T.P.: Reference directions and reference objects in spatial memory of a briefly viewed layout. Cognition 108, 136–154 (2008)

    Article  Google Scholar 

  29. O’Keefe, J., Burgess, N.: Geometric determinants of the place fields of hippocampal neurons. Nature 381, 425–428 (1996)

    Article  Google Scholar 

  30. O’Keefe, J., Nadel, L.: The hippocampus as a cognitive map. Clarendon Press, Oxford (1978)

    Google Scholar 

  31. Poucet, B.: Spatial cognitive maps in animals: New hypotheses on their structure and neural mechanisms. Psychological Review 100, 163–182 (1993)

    Article  Google Scholar 

  32. Restat, J., Steck, S.D., Mochnatzki, H.F., Mallot, H.A.: Geographical slant facilitates navigation and orientation in virtual environments. Perception 33, 667–687 (2004)

    Article  Google Scholar 

  33. Rump, B., McNamara, T.P.: Updating Models of Spatial Memory. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition V, pp. 249–269. Springer, Berlin (2007)

    Google Scholar 

  34. Schnapp, B., Warren, W.: Wormholes in virtual reality: What spatial knowledge is learned for navigation? In: Proceedings of the 7th Annual Meeting of the Vision Science Society 2007, Sarasota, Florida, USA (2007)

    Google Scholar 

  35. Sholl, J.M., Kenny, R.J., DellaPorta, K.A.: Allocentric-heading recall and its relation to self-reported sense-of-direction. Journal of Experimental Psychology: Learning, Memory, and Cognition 32, 516–533 (2006)

    Article  Google Scholar 

  36. Siegel, A.W., White, S.H.: The development of spatial representations of large-scale environments. In: Reese, H. (ed.) Advances in Child Development and Behavior, vol. 10, pp. 10–55. Academic Press, New York (1975)

    Google Scholar 

  37. Skaggs, W.E., McNaughton, B.L.: Spatial Firing Properties of Hippocampal CA1 Populations in an Environment Containing Two Visually Identical Regions. Journal of Neuroscience 18, 8455–8466 (1998)

    Google Scholar 

  38. Stankiewicz, B.J., Legge, G.E., Mansfield, J.S., Schlicht, E.J.: Lost in Virtual Space: Studies in Human and Ideal Spatial Navigation. Journal of Experimental Psychology: Human Perception and Performance 37, 688–704 (2006)

    Article  Google Scholar 

  39. Stern, E., Leiser, D.: Levels of spatial knowledge and urban travel modeling. Geographical Analysis 20, 140–155 (1988)

    Google Scholar 

  40. Stevens, A., Coupe, P.: Distortions in judged spatial relations. Cognitive Psychology 10, 422–437 (1978)

    Article  Google Scholar 

  41. Thorndyke, P.W., Hayes-Roth, B.: Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology 14, 560–589 (1982)

    Article  Google Scholar 

  42. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  43. Tolman, E.C., Ritchie, B.F., Khalish, D.: Studies in spatial learning. I. Orientation and the short-cut. Journal of Experimental Psychology 36, 13–24 (1946)

    Article  Google Scholar 

  44. Touretzky, D.S., Redish, A.D.: Theory of rodent navigation based on interacting representations of space. Hippocampus 6, 247–270 (1996)

    Article  Google Scholar 

  45. Trullier, O., Wiener, S.I., Berthoz, A., Meyer, J.-A.: Biologically based artificial navigation systems: Review and prospects. Progress in Neurobiology 51, 483–544 (1997)

    Article  Google Scholar 

  46. Wang, F.R., Spelke, E.S.: Human spatial representation: insights form animals. Trends in Cognitive Sciences 6, 376–382 (2002)

    Article  Google Scholar 

  47. Wang, R.F., Brockmole, J.R.: Simultaneous spatial updating in nested environments. Psychonomic Bulletin & Review 10, 981–986 (2003)

    Google Scholar 

  48. Werner, S., Krieg-Brückner, B., Herrmann, T.: Modelling Navigational Knowledge by Route Graphs. In: Habel, C., Brauer, W., Freksa, C., Wender, K.F. (eds.) Spatial Cognition 2000. LNCS (LNAI), vol. 1849, pp. 295–316. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  49. Wiener, J., Mallot, H.: Fine-to-coarse route planning and navigation in regionalized environments. Spatial Cognition and Computation 3, 331–358 (2003)

    Article  Google Scholar 

  50. Yeap, W.K.: Toward a computational theory of cognitive maps. Artificial Intelligence 34, 297–360 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Freksa Nora S. Newcombe Peter Gärdenfors Stefan Wölfl

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meilinger, T. (2008). The Network of Reference Frames Theory: A Synthesis of Graphs and Cognitive Maps. In: Freksa, C., Newcombe, N.S., Gärdenfors, P., Wölfl, S. (eds) Spatial Cognition VI. Learning, Reasoning, and Talking about Space. Spatial Cognition 2008. Lecture Notes in Computer Science(), vol 5248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87601-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87601-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87600-7

  • Online ISBN: 978-3-540-87601-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics