Skip to main content

Embryology of the Kidney

  • Chapter
  • First Online:
Radiological Imaging of the Kidney

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

During the third week of pregnancy, the process of gastrulation results in the formation of trilaminar embryo in humans. This is the beginning of morphogenesis (development of body form). Three germ layers, ectoderm, mesoderm, and endoderm, are present. A specific part of mesoderm, the intermediate mesoderm, gives rise to urogenital system gradually. It starts to develop from nephrogenic cord, which divides in nephrotomes. They give rise to pronephroi and subsequently mesonephroi, the transitory kidneys. Finally, metanephroi appear as the permanent organs, from two different structures: the metanephrogenic blastema (mesenchimal component) that leads to nephrons, and ureteric bud (epithelial component) that gives rise to collecting tubules, calices, renal pelvis, and ureter. Following developmental steps depend on inductive signaling between metanephrogenic blastema and ureteric bud.

Many genes, regulating proteins and pathways are involved in the physiological organogenesis. Cell proliferation and apoptosis keep the balance of the growth. Defects in these molecular and morphogenetic mechanisms may cause various congenital abnormalities of the kidney and urinary tract (CAKUT), which represent a family of diseases with a diverse anatomical spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arant BS Jr (1987) Postnatal development of renal function during the first year of life. Pediatr Nephrol 1:308–313

    Article  PubMed  Google Scholar 

  • Behrman RE, Kliegman RM, Arvin AM (1996) Nelson textbook of pediatrics, 15th edn. WB Saunders, Philadelphia

    Google Scholar 

  • Brandenberger R, Schmidt A, Linton J et al. (2001) Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin alpha8beta1 in embryonic kidney. J Cell Biol 154(2):447–458

    Article  PubMed  CAS  Google Scholar 

  • Camp V, Martin P (1996) Programmed cell death and its clearance in the developing kidney. Exp Nephr 4:105–111

    CAS  Google Scholar 

  • Coles HSR, Burne JF, Raff MC (1993) Large scale normal cell death in the developing rat kidney and its reduction by epidermal growth factor. Development (Cambridge, UK) 118:777–784

    Google Scholar 

  • Davies JA, Bard JBL (1998) The development of the kidney. Curr Topics Devel Biol 39:245–301

    Article  CAS  Google Scholar 

  • Davies JA, Fisher CE (2002) Genes and proteins in renal development. Exp Nephrol 10:102–113

    Article  PubMed  CAS  Google Scholar 

  • Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529

    Article  PubMed  CAS  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  PubMed  CAS  Google Scholar 

  • Eremina V, Sood M, Haigh J et al. (2003) Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 111:707–716

    PubMed  CAS  Google Scholar 

  • Gasser B, Mauss Y, Ghnassia JP et al. (1993) A quantitative study of normal nephrogenesis in the human fetus: its implication in the natural history of kidney changes due to low obstructive uropathies. Fetal Diagn Ther 8:371–384

    Article  PubMed  CAS  Google Scholar 

  • Grobstein C (1956) Trans-filter induction of tubules in mouse metanephric mesenchyme. Exp Cell Res 10:424–440

    Article  PubMed  CAS  Google Scholar 

  • Kispert A, Vainio S, McMahon AP (1998) Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125:4225–4234

    PubMed  CAS  Google Scholar 

  • Koseki C, Herzlinger D, al-Awqati Q (1992) Apoptosis in metanephric development. J Cell Biol 119:1327–1333

    Article  PubMed  CAS  Google Scholar 

  • Kuure S, Vuolteenaho R, Vainio S (2000) Kidney morphogenesis: cellular and molecular regulation. Mech Dev 92(1):31–45

    Article  PubMed  CAS  Google Scholar 

  • Kuwajama F, Miyzaki Y, Ichikawa I (2002) Embriogenesis of the congenital anomalies of the kidney and urinary tract. Nephrol Dial Transplant 17 (suppl 9):45–47

    Google Scholar 

  • Lehner MS, Dressler GR (1997) The molecular basis of embrionic kidney development. Mech Dev 62:105–120

    Article  Google Scholar 

  • Levinson RS, Batuorina E, Choi C et al. (2005) FOXD1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development 132:529–539

    Article  PubMed  CAS  Google Scholar 

  • Lindal P, Hellstrom M, Kalen M et al. (1998) Paracrine PDGF-B/PDGF-Rβ signalling controls mesangial cell development in kidney development. Development 125:3313–3322

    Google Scholar 

  • Maiumdar A, Vainio S, Kispert A et al. (2003) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130(14):3175–3185

    Article  Google Scholar 

  • Mesrobian HG, Rushton HG, Bulas D (1993) Unilateral renal agenesis may result from in utero regression of multicystic renal dysplasia. J Urol 150:793–794

    PubMed  CAS  Google Scholar 

  • Miyazaki Y, Ichikawa I (2003) Ontogeny of congenital anomalies of the kidney and urinary tract, CAKUT. Pediatr Int 45(5):598–604

    Article  PubMed  Google Scholar 

  • Moore KL (1992) Clinically oriented anatomy, 3rd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Quinlan J, Lemire M, Hudson T et al. (2007) A common variant of PAX2 gene is associated with reduced newborn kidney size. J Am Soc Nephrol 18:1915–1921

    Article  PubMed  CAS  Google Scholar 

  • Rivera MN, Haber DA (2005) Wilms’ tumor: connecting tumorigenesis and organ development in the kidney. Nature Rev Cancer 5:699–712

    Article  CAS  Google Scholar 

  • Robertson JD, Orrenius S, Zhivotovsky B (2000) Review: nuclear events in apoptosis. J Struct Biol 129(2–3):346–358

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum ND (2008) Developmental biology of the human kidney. Semin Fetal Neonatal Med 13:125–132

    Article  Google Scholar 

  • Saxén L., Sariola H (1987) Early organogenesis of the kidney. Pediatr Nephrol. Jul;1(3):385–392.

    Google Scholar 

  • Schedl A (2007) Renal abnormalities and their developmental origin. Nat Rev Genet. Oct;8(10):791–802

    Article  PubMed  CAS  Google Scholar 

  • Stahl DA, Koul HK, Chacko JK, Mingin GC (2006) Congenital anomalies of the kidney and urinary tract (CAKUT): a curren rewiev cell signalling processes in ureteral development. J Ped Urol 2:2–9

    Article  Google Scholar 

  • Vainio SJ (2003) Nephrogenesis regulated by Wnt signaling. J Nephrol 16(2)279–285. Review

    Google Scholar 

  • Veis DJ, Sorenson CM, Shutter JR et al (1993) Bcl-2 deficient mice demonstrate fulminant lymphoid apoptosis and abnormal kidney development in Bcl-2 deficient mice. Am J Physiol 268: F73–F81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Zweyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Zweyer, M. (2010). Embryology of the Kidney. In: Quaia, E. (eds) Radiological Imaging of the Kidney. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87597-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87597-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87596-3

  • Online ISBN: 978-3-540-87597-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics