Efficient Feature Selection for PTR-MS Fingerprinting of Agroindustrial Products

  • Pablo M. Granitto
  • Franco Biasioli
  • Cesare Furlanello
  • Flavia Gasperi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5164)


We recently introduced the Random Forest - Recursive Feature Elimination (RF-RFE) algorithm for feature selection. In this paper we apply it to the identification of relevant features in the spectra (fingerprints) produced by Proton Transfer Reaction - Mass Spectrometry (PTR-MS) analysis of four agro-industrial products (two datasets with cultivars of Berries and other two with typical cheeses, all from North Italy). The method is compared with the more traditional Support Vector Machine - Recursive Feature Elimination (SVM-RFE), extended to allow multiclass problems. Using replicated experiments we estimate unbiased generalization errors for both methods. We analyze the stability of the two methods and find that RF-RFE is more stable than SVM-RFE in selecting small subsets of features. Our results also show that RF-RFE outperforms SVM-RFE on the task of finding small subsets of features with high discrimination levels on PTR-MS datasets.


Support Vector Machine Feature Selection Feature Selection Method Recursive Feature Elimination Feature Selection Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hansel, A., Jordan, A., Holzinger, R., Prazeller, P., Vogel, W., Lindinger, W.: Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level. Int. J. Mass. Spectrom. Ion Procs. 149/150, 609–619 (1995)CrossRefGoogle Scholar
  2. 2.
    Lindinger, W., Hansel, A., Jordan, A.: On-line monitoring of volatile organic compounds at ppt level by means of Proton-Transfer-Reaction Mass Spectrometry (PTR-MS): Medical application, food control and environmental research. Int. J. Mass. Spectrom. Ion Procs. 173, 191–241 (1998)CrossRefGoogle Scholar
  3. 3.
    Biasioli, F., Gasperi, F., Aprea, E., Colato, L., Boscaini, E., Märk, T.D.: Fingerprinting mass spectrometry by PTR-MS: heat treatment vs. pressure treatments of red orange juice - a case study. Int. J. Mass. Spectrom, 223-224, 343-353 (2003)Google Scholar
  4. 4.
    Biasioli, F., Gasperi, F., Aprea, E., Mott, D., Boscaini, E., Mayr, D., Märk, T.D.: Coupling Proton Transfer Reaction-Mass Spectrometry with Linear Discriminant Analysis: a Case Study. J. Agr. Food Chem. 51, 7227–7233 (2003)CrossRefGoogle Scholar
  5. 5.
    Boscaini, E., Van Ruth, S., Biasioli, F., Gasperi, F., Märk, T.D.: Gas Chromatography-Olfactometry (GC-O) and Proton Transfer Reaction-Mass Spectrometry (PTR-MS). Analysis of the Flavor Profile of Grana Padano, Parmigiano Reggiano, and Grana Trentino Cheeses. J. Agr. Food Chem. 51, 1782–1790 (2003)Google Scholar
  6. 6.
    Biasioli, F., Gasperi, F., Aprea, E., Endrizzi, I., Framondino, V., Marini, F., Mott, D., Märk, T.D.: Correlation of PTR-MS spectral fingerprints with sensory characterisation of flavour and odour profile of Trentingrana cheese. Food Qual. Prefer. 17, 63–75 (2006)CrossRefGoogle Scholar
  7. 7.
    Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97, 273–324 (1996)CrossRefGoogle Scholar
  9. 9.
    Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 46, 389–422 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Ambroise, C., McLachlan, G.: Selection bias in gene extraction on the basis of microarray gene-expression data. P. Natl. Acad. Sci. USA 99, 6562–6566 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Furlanello, C., Serafini, M., Merler, S., Jurman, G.: Entropy-Based Gene Ranking without Selection Bias for the Predictive Classification of Microarray Data. BMC Bioinformatics 4, 54 (2003)CrossRefGoogle Scholar
  12. 12.
    Ramaswamy, S., et al.: Multiclass cancer diagnosis using tumor gene expression signatures. P. Natl. Acad. Sci. USA 98, 15149–15154 (2001)CrossRefGoogle Scholar
  13. 13.
    Li, H., Ung, C.Y., Yap, C.W., Xue, Y., Li, Z.R., Cao, Z.W., Chen, Y.Z.: Prediction of Genotoxicity of Chemical Compounds by Statistical Learning Methods. Chem. Res. Toxicol. 18, 1071–1080 (2005)CrossRefGoogle Scholar
  14. 14.
    Granitto, P.M., Furlanello, C., Biasioli, F., Gasperi, F.: Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemometr. Intell. Lab. 83, 83–90 (2006)CrossRefGoogle Scholar
  15. 15.
    Breiman, L.: Random Forests. Mach. Learn. 45, 5–32 (2001)zbMATHCrossRefGoogle Scholar
  16. 16.
    Breiman, L.: Heuristics of instability and stabilization in model selection. Ann. Stat. 24, 2350–2383 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class support vector machines. IEEE T. Neural Networ. 13, 415–425 (2002)CrossRefGoogle Scholar
  18. 18.
    Allwein, E., Schapire, R., Singer, Y.: Reducing Multiclass to Binary: A unified Approach for Margin Classifiers. J. Mach. Learn. Res. 1, 113–141 (2000)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)zbMATHGoogle Scholar
  20. 20.
    Huang, T.-M., Kecman, V.: Gene extraction for cancer diagnosis by support vector machines. Artif. Intell. Med. 35, 185–194 (2005)CrossRefGoogle Scholar
  21. 21.
    Gasperi, F., Biasioli, F., Framondino, V., Endrizzi, I.: Ruolo dell´analisi sensoriale nella definizione delle caratteristiche dei prodotti tipici: l´esempio dei formaggi trentini / The role of sensory analysis in the characterization of traditional products: the case study of the cheese from Trentino. Sci. Tecn. Latt.-Cas. 55, 345–364 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pablo M. Granitto
    • 1
  • Franco Biasioli
    • 2
  • Cesare Furlanello
    • 3
  • Flavia Gasperi
    • 2
  1. 1.CIFASIS, CONICET/UNR/UPCRosarioArgentina
  2. 2.Agrifood Quality DepartmentFEM-IASMA Research CenterSan Michele allAdigeItaly
  3. 3.FBK-irstPovoItaly

Personalised recommendations