Advertisement

Modeling the Effects of Dopamine on the Antisaccade Reaction Times (aSRT) of Schizophrenia Patients

  • Ioannis Kahramanoglou
  • Stavros Perantonis
  • Nikolaos Smyrnis
  • Ioannis Evdokimidis
  • Vassilis Cutsuridis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5164)

Abstract

In the antisaccade task, subjects are instructed to look in the opposite direction of a visually presented stimulus. Controls can perform this task successfully with very few errors, whereas schizophrenia patients make more errors and their responses are slower and more variable. It has been proposed the fundamental cognitive dysfunction in schizophrenia involves prefrontal dopaminergic hypoactivity. We examine via computer simulations the effects of dopamine on the variability of aSRTs in a neural cortico-collicular accumulator model with stochastic climbing activity. We report the simulated aSRTs for the hypo-DA level have higher standard deviation and mean values than in the normal and hyper DA level. The simulated higher mean and standard deviation for the hypo-DA group resemble the performance differences in the antisaccade task observed in patients with schizophrenia and are in accordance with the theory of a hypo-DA state in the frontal cortical areas of patients with schizophrenia.

Keywords

Accumulator model schizophrenia antisaccade task reaction times dopamine cortex superior colliculus pyramidal cells inhibitory interneurons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Evdokimidis, I., Smyrnis, N., Constantinidis, T.S., Stefanis, N.C., Avramopoulos, D., Paximadis, C., Theleritis, C., Efstratiadis, C., Kastrinakis, G., Stefanis, C.N.: The Antisaccade Task in a Sample of 2006 Young Men I. Normal Population Characteristics. Exp Brain Res. 147, 45–52 (2002)Google Scholar
  2. 2.
    Smyrnis, N., Evdokimidis, I., Stefanis, N.C., Constantinidis, T.S., Avramopoulos, D., Theleritis, C., Paximadis, C., Efstratiadis, C., Kastrinakis, G., Stefanis, C.N.: The Antisaccade Task in a Sample of 2006 Young Males II. Effects of Task Parameters. Exp. Brain Res. 147, 53–63 (2002)Google Scholar
  3. 3.
    Cutsuridis, V., Smyrnis, N., Evdokimidis, I., Perantonis, S.: A Neural Model of Decision Making by the Superior Colliculus in an Antisaccade Task. Neural Networks 20(6), 690–704 (2006)CrossRefGoogle Scholar
  4. 4.
    Cutsuridis, V., Kahramanoglou, I., Smyrnis, N., Evdokimidis, I., Perantonis, S.: A Neural Variable Integrator Model of decision making in an Antisaccade Task. Neurocomputing 70(7-9), 1390–1402 (2007)CrossRefGoogle Scholar
  5. 5.
    Cutsuridis, V., Kahramanoglou, I., Perantonis, S., Evdokimidis, I., Smyrnis, N.: A Biophysical Model of decision making in an Antisaccade Task through variable climbing activity. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 205–210. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Cutsuridis, V., Kahramanoglou, I., Smyrnis, N., Evdokimidis, I., Perantonis, S.: Parametric Analysis of Ionic and Synaptic Current Conductances in an Acuumulator model with variable Climbing Activity. In: Book of abstracts of 19th Conference of Hellenic Society for Neuroscience, Patra, Greece (2005)Google Scholar
  7. 7.
    Kahramanoglou, I., Cutsuridis, V., Smyrnis, N., Evdokimidis, I., Perantonis, S.: Dopamine Modification in a Neural Accumulator Model of the Antisaccade Task. In: Book of abstracts of the 1st Computational Cognitive Neuroscience Conference, New Orleans, USA, November 11-13 (2005)Google Scholar
  8. 8.
    Cutsuridis, V., Smyrnis, N., Evdokimidis, I., Kahramanoglou, I., Perantonis, S.: Neural network modeling of eye movement behavior in the antisaccade task: validation by comparison with data from 2006 normal individuals, Program No. 72.13. 2003 Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington (2003)Google Scholar
  9. 9.
    Cutsuridis, V., Evdokimidis, I., Kahramanoglou, I., Perantonis, S., Smyrnis, N.: Neural Network model of eye movement behavior in an antisaccade task. In: Book of abstracts of the 18th Conference of Hellenic Society for Neuroscience, Athens, Greece (2003)Google Scholar
  10. 10.
    Revheim, N., Schechter, I., Kim, D., Silipo, G., Allingham, B., Butler, P., Javitt, D.C.: Neurocognitive and symptom correlates of daily problem-solving skills in schizophrenia. Schizophr Res. (2006)Google Scholar
  11. 11.
    Shampine, L.F., Reichelt, M.W.: The MATLAB ODE Suite. SIAM Journal on Scientific Computing 18, 1–22 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ratcliff, R.: Group reaction time distributions and an analysis of distribution statistics. Psychol. Bulletin 86(3), 446–461 (1979)CrossRefGoogle Scholar
  13. 13.
    Trappenberg, T.P., Dorris, M.C., Munoz, D.P., Klein, R.M.: A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. J. Cogn. Neurosci. 13(2), 256–271 (2001)CrossRefGoogle Scholar
  14. 14.
    Durstewitz, D., Seamans, J.K., Sejnowski, T.J.: Dopamine-Mediated Stabilization of Delay-Period Activity in a Network Model of Prefrontal Cortex. J. Neurophys. 83, 1733–1750 (2000)Google Scholar
  15. 15.
    Chen, L., Yang, C.R.: Interaction of dopamine D1 and NMDA receptors mediates acute clozapine potentiation of glutamate EPSPs in rat prefrontal cortex. J.Neuphysiology 87, 2324–2336 (2002)Google Scholar
  16. 16.
    Seamans, J.K., Durstewitz, D., Christie, B.R., Stevens, C.F., Sejnowski, T.J.: Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. PNAS 98(1), 301–306 (2001)CrossRefGoogle Scholar
  17. 17.
    Gorelova, N., Seamans, J., Yang, C.R.: Mechanisms of dopamine activation of fast spiking interneurons that exert inhibition in rat prefrontal cortex. J.Neuroph. 88, 3150–3166 (2002)CrossRefGoogle Scholar
  18. 18.
    Gorelova, N.A., Yang, C.R.: Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro. J.Neurophysiol. 84, 75–87 (2000)Google Scholar
  19. 19.
    Destexhe, A., Mainen, Z.F., Sejnowski, T.J.: An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Comp. 6, 14–18 (1994)CrossRefGoogle Scholar
  20. 20.
    Seamans, J.K., Yang, C.R.: The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology 74, 1–57 (2004)CrossRefGoogle Scholar
  21. 21.
    Brownstein, J., Krastishevsky, O., McCollum, C., Kundamal, S., Matthysse, S., Holzman, P.S., Mendell, N.R., Levy, D.L.: Antisaccade performance is abnormal in schizophrenic patients but not their biological relatives. Schizophrenia Research 63, 13–25 (2003)CrossRefGoogle Scholar
  22. 22.
    Manoach, D.S., Lindgren, K.A., Cherkasova, M.V.: Schizophrenic subjects show deficit inhibition but intact task switching of saccadic tasks. Biol. Psychiatry 51, 816–826 (2002)CrossRefGoogle Scholar
  23. 23.
    Reuter, B., Rakusan, L., Kathmanna, N.: Poor antisaccade performance in schizophrenia: An inhibition effect? Psychiatry Research 135, 1–10 (2005)CrossRefGoogle Scholar
  24. 24.
    Tanaka, S.: Dopamine controls fundamental cognitive operations of multi-target spatial working memory. Neural Networks 15, 573–582 (2002)CrossRefGoogle Scholar
  25. 25.
    Yamashita, K., Tanaka, S.: Parametric study of dopaminergic neuromodulatory effects in a reduced model of the prefrontal cortex. Neurocomputing 65-66, 579–586 (2005)CrossRefGoogle Scholar
  26. 26.
    Tanaka, S.: State-dependent alteration of dopamine and glutamate transmission in the prefrontal cortex by psychostimulants. Neurocomputing 65-66, 587–594 (2005)CrossRefGoogle Scholar
  27. 27.
    Yamashita, K., Tanaka, S.: Circuit properties of the cortico-mesocortical system. Neurocomputing 52-54, 969–975 (2003)CrossRefGoogle Scholar
  28. 28.
    Davidson, H.T., Neely, L.C., Lavin, A., Seamans, J.K.: Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex. J. Neurosci. 24(47), 10652–10659 (2004)CrossRefGoogle Scholar
  29. 29.
    Yamashita, K., Tanaka, S.: Circuit simulation of memory field modulation by dopamine D1 receptor activation. Neurocomputing 44-46, 1035–1042 (2002)CrossRefGoogle Scholar
  30. 30.
    Kahramanoglou, I., Cutsuridis, V., Smyrnis, N., Evdokimidis, I., Perantonis, S.: Dopamine modification of the climbing activity in a neural accumulator model of the antisaccade task. Neural Networks, under reviewGoogle Scholar
  31. 31.
    Kahramanoglou, I., Cutsuridis, V., Smyrnis, N., Evdokimidis, I., Perantonis, S.: Dopamine effect on climbing activity of a cortico-tectal model: Simulating the performance of patients with DSM-IV schizophrenia in the antisaccade task. In: 2nd Annual Conference on Computational Cognitive Neuroscience, Houston, USA, November 16-19 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ioannis Kahramanoglou
    • 1
  • Stavros Perantonis
    • 1
  • Nikolaos Smyrnis
    • 2
  • Ioannis Evdokimidis
    • 2
  • Vassilis Cutsuridis
    • 3
  1. 1.Computational Intelligence Laboratory, Institute of Informatics and TelecommunicationsNational Center for Scientific Research “Demokritos”Athens 
  2. 2.Cognition and Action Group, Neurology DepartmentNational University of Athens, Aeginition HospitalAthens
  3. 3.Department of Computing Science and MathematicsUniversity of StirlingStirlingU.K.

Personalised recommendations