Advertisement

A Bio-inspired Architecture of an Active Visual Search Model

  • Vassilis Cutsuridis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5164)

Abstract

A novel brain inspired cognitive system architecture of an active visual search model is presented. The model is multi-modular consisting of spatial and object visual processing, attention, reinforcement learning, motor plan and motor execution modules. The novelty of the model lies on its decision making mechanisms. In contrast to previous models, decisions are made from the interplay of a winner-take-all mechanism in the spatial, object and motor salient maps between the resonated by top-down attention and bottom-up visual feature extraction and salient map formation selectively tuned by a reinforcement signal spatial, object and motor representations, and a reset mechanism due to inhibitory feedback input from the motor execution module to all other modules. The reset mechanism due to feedback inhibitory signals from the motor execution module to all other modules suppresses the last attended location from the saliency map and allows for the next gaze to be executed.

Keywords

Visual search cognitive system dopamine saliency ART decision making attention perception action reinforcement learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cutsuridis, V., Perantonis, S.: A Neural Network Model of Parkinson’s Disease Bradykinesia. Neural Networks 19(4), 354–374 (2006)zbMATHCrossRefGoogle Scholar
  2. 2.
    Cutsuridis, V.: Does Reduced Spinal Reciprocal Inhibition Lead to Co-contraction of Antagonist Motor Units? A Modeling Study. Int. J. Neur. Syst. 17(4), 319–327 (2007)Google Scholar
  3. 3.
    Cutsuridis, V., Smyrnis, N., Evdokimidis, I., Perantonis, S.: A Neural Network Model of Decision Making in an Antisaccade Task by the Superior Colliculus. Neural Networks 20(6), 690–704 (2007b)zbMATHCrossRefGoogle Scholar
  4. 4.
    Cutsuridis, V., Kahramanoglou, I., Smyrnis, N., Evdokimidis, I., Perantonis, S.: A Neural Variable Integrator Model of Decision Making in an Antisaccade Task. Neurocomputing 70(7-9), 1390–1402 (2007a)CrossRefGoogle Scholar
  5. 5.
    Cutsuridis, V.: Neural Model of Dopaminergic Control of Arm Movements in Parkinson’s Disease Bradykinesia. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 583–591. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Cutsuridis, V., Kahramanoglou, I., Perantonis, S., Evdokimidis, I., Smyrnis, N.: A Biophysical Model of Decision Making in an Antisaccade Task Through Variable Climbing Activity. In: Duch, W., et al. (eds.) ICANN 2005. LNCS, vol. 3695, pp. 205–210. Springer, Berlin (2005)Google Scholar
  7. 7.
    Comoli, E., Coizet, V., Boyes, J., Bolam, J.P., Canteras, N.S., Quirk, R.H., Overton, P.G., Redgrave, P.: A Direct Projection from the Superior Colliculus to Substantia Nigra for Detecting Salient Visual Events. Nat. Neurosci. 6(9), 974–980 (2003)Google Scholar
  8. 8.
    Coizet, V., Comoli, E., Westby, G.W., Redgrave, P.: Phasic Activation of Substantia Nigra and the Ventral Tegmental Area by Chemical Stimulation of the Superior Colliculus: An Electrophysiological Investigation in the Rat. Eur. J. Neurosci. 17(1), 28–40 (2003)CrossRefGoogle Scholar
  9. 9.
    Schultz, W.: Predictive Reward Signal of Dopamine Neurons. J. Neurophysiol. 80, 1–27 (1998)Google Scholar
  10. 10.
    McHaffie, J.G., Jiang, H., May, P.J., Coizet, V., Overton, P.G., Stein, B.E., Redgrave, P.: A Direct Projection from Superior Colliculus to Substantia Nigra Pars Compacta in the Cat. Neurosci. 138(1), 221–234 (2006)Google Scholar
  11. 11.
    May, P.J., et al.: Projections from the Superior Colliculus to Substantia Nigra Pars Compacta in a Primate. Soc. Neurosci. Abstr. 450(2) (2005)Google Scholar
  12. 12.
    Redgrave, P., Gurney, K.: The Short Latency Dopamine Signal: A Role in Discovering Novel Actions. Nat. Neurosci. 7, 967–975 (2006)CrossRefGoogle Scholar
  13. 13.
    Itti, L., Koch, C.: Computational Modelling of Visual Attention. Nat. Neurosci. 2, 194–203 (2001)CrossRefGoogle Scholar
  14. 14.
    Koch, C., Ullman, S.: Shifts in Selective Visual Attention: Towards the Underlying Neural Circuitry. Hum. Neurobiol. 4, 219–227 (1995)Google Scholar
  15. 15.
    Didday, R.L., Arbib, M.A.: Eye Movements and Visual Perception: A Two Visual System Model. Int. J. Man-Machine Studies 7, 547–569 (1975)zbMATHCrossRefGoogle Scholar
  16. 16.
    Lee, D.K., Itti, L., Koch, C., Braun, J.: Attention Activates Winner-Take-All Competition Among Visual Filters. Nat. Neurosci. 2, 375–381 (1999)CrossRefGoogle Scholar
  17. 17.
    Deco, G., Rolls, E.T.: Attention, Short-Memory and Action Selection: A Unifying Theory. Prog. Neurobiol. 76, 236–256 (2005)Google Scholar
  18. 18.
    Korsten, N.J.H., Fragopanagos, N., Hartley, M., Taylor, N., Taylor, J.G.: Attention as a Controller. Neural Networks 19, 1408–1421 (2006)zbMATHCrossRefGoogle Scholar
  19. 19.
    Desimone, R., Duncan, J.: Neural Mechanisms of Selective Visual Attention. Ann. Rev. Neurosci. 18, 193–222 (1995)CrossRefGoogle Scholar
  20. 20.
    Tsotsos, J.K., Culhane, S., Wai, W., Lai, Y., Davis, N., Nuflo, F.: Modeling Visual Attention via Selective Tuning. Art. Intel. 78(1-2), 507–547 (1995)CrossRefGoogle Scholar
  21. 21.
    Itti, L., Koch, C.: A Saliency Based Search Mechanism for Overt and Covert Shifts of Visual Attention. Vision Res. 40, 1489–1506 (2000)CrossRefGoogle Scholar
  22. 22.
    Grossberg, S., Raisada, R.D.: Contrast-Sensitive Perceptual Grouping and Object-Based Attention in the Laminar Circuits of Primary Visual Cortex. Vision Res. 40, 1413–1432 (2000)CrossRefGoogle Scholar
  23. 23.
    Dommett, E., Coizet, V., Blaha, C.D., Martindale, J., Lefebre, V., Walton, N., Mayhew, J.E., Overton, P.G., Redgrave, P.: How Visual Stimuli Activate Dopaminergic Neurons at Short Latency. Science 307(5714), 1476–9 (2005)Google Scholar
  24. 24.
    Grossberg, S.: Competitive Learning: From Interactive Activation to Adaptive Resonance. Cogn. Sci. 11, 23–63 (1987)CrossRefGoogle Scholar
  25. 25.
    Carpenter, G.A., Grossberg, S.: Adaptive Resonance Theory. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, 2nd edn., pp. 87–90. MIT Press, Cambridge (2003)Google Scholar
  26. 26.
    Reynolds, J.H., Desimone, R.: The Role of Neural Mechanisms of Attention in Solving the Binding Problem. Neuron 24(1), 19–29 (1999)CrossRefGoogle Scholar
  27. 27.
    Thrope, S., Fize, D., Marlot, C.: Speed of Processing in the Human Visual System. Nature 381(6582), 520–522 (1996)CrossRefGoogle Scholar
  28. 28.
    Thompson, K.G., Bichot, N.P.: A Visual Saliency Map in the Primate Frontal Eye Field. Prog. Brain Res. 147, 251–262 (2005)Google Scholar
  29. 29.
    Hamker, F.H.: The Re-entry hypothesis: The Putative Interaction of the Frontal Eye Field, Ventrolateral Prefrontal Cortex and Areas V4, IT of Attention and Eye Movement. Cereb. Cortex 15, 431–447 (2005)CrossRefGoogle Scholar
  30. 30.
    Brown, J.W., Bullock, D., Grossberg, S.: How Laminar Frontal Cortex and Basal Ganglia Circuits Interact to Control Planned and Reactive Saccades. Neural Networks 17, 471–510 (2004)zbMATHCrossRefGoogle Scholar
  31. 31.
    Tsotsos, J.K., Culhane, S.M., Wai, W.Y.K., Lai, Y.H., Davis, N., Nublo, F.: Modelling Visual Attention via Selective Tuning. Artif. Intell. 78(1-2), 506–545 (1995)CrossRefGoogle Scholar
  32. 32.
    Tsotsos, J.K., Liu, Y., Martinez-Trujillo, J.C., Pomplun, M., Simine, E., Zhou, K.: Attending to Visual Motion. Comput. Vis. Image Und. 100(1-2), 3–40 (2005)CrossRefGoogle Scholar
  33. 33.
    Cutzu, F., Tsotsos, J.K.: The Selective Tuning Model of Attention: Psychophysical Evidence for a Suppressive Annulus Around an Attended Item. Vis. Res. 43(2), 205–219 (2003)CrossRefGoogle Scholar
  34. 34.
    Rothenstein, A.L., Tsotsos, J.K.: Attention Links Sensing to Recognition. Image and Vision Computing 26(1), 114–126 (2008)CrossRefGoogle Scholar
  35. 35.
    Taylor, J.G.: Race for Consciousness. MIT Press, CambridgeGoogle Scholar
  36. 36.
    Taylor, J.G., Fragopanagos, N.: Simulations of Attention Control Models in Sensory and Motor Paradigms. In: Proc. Int. J. Conf. Neur. Netw., pp. 298–303 (2003)Google Scholar
  37. 37.
    Taylor, J.G., Rogers, M.: A Control Model of the Movement of Attention. Neural Networks 15, 309–326 (2002)CrossRefGoogle Scholar
  38. 38.
    Taylor, J.G.: Paying Attention to Consciousness. TICS 6, 206–210 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Vassilis Cutsuridis
    • 1
  1. 1.Department of Computing Science and MathematicsUniversity of StirlingStirlingU.K.

Personalised recommendations