Advertisement

Implementing Bayes’ Rule with Neural Fields

  • Raymond H. Cuijpers
  • Wolfram Erlhagen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5164)

Abstract

Bayesian statistics is has been very successful in describing behavioural data on decision making and cue integration under noisy circumstances. However, it is still an open question how the human brain actually incorporates this functionality. Here we compare three ways in which Bayes rule can be implemented using neural fields. The result is a truly dynamic framework that can easily be extended by non-Bayesian mechanisms such as learning and memory.

Keywords

Bayesian statistics Neural fields Decision making Population coding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gold, J.I., Shadlen, M.N.: The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007)CrossRefGoogle Scholar
  2. 2.
    Hillis, J.M., Watt, S.J., Landy, M.S., Banks, M.S.: Slant from texture and disparity cues: optimal cue combination. J Vis 4, 967–992 (2004)CrossRefGoogle Scholar
  3. 3.
    Kuss, M., Jäkel, F., Wichmann, F.A.: Bayesian inference for psychometric functions. J. Vis. 5, 478–492 (2005)CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Geisler, W.S., Seidemann, E.: Optimal decoding of correlated neural population responses in the primate visual cortex. Nat. Neurosci. 9, 1412–1420 (2006)CrossRefGoogle Scholar
  5. 5.
    Ma, W.J., Beck, J.M., Latham, P.E., Pouget, A.: Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006)CrossRefGoogle Scholar
  6. 6.
    Zemel, R.S., Dayan, P., Pouget, A.: Probabilistic interpretation of population codes. Neural Comput. 10, 403–430 (1998)CrossRefGoogle Scholar
  7. 7.
    Rao, R.P.N.: Bayesian computation in recurrent neural circuits. Neural Comput. 16, 1–38 (2004)zbMATHCrossRefGoogle Scholar
  8. 8.
    Cisek, P.: Integrated neural processes for defining potential actions and deciding between them: a computational model. J. Neurosci. 26, 9761–9770 (2006)CrossRefGoogle Scholar
  9. 9.
    Wilimzig, C., Schneider, S., Schner, G.: The time course of saccadic decision making: dynamic field theory. Neural Netw. 19, 1059–1074 (2006)zbMATHCrossRefGoogle Scholar
  10. 10.
    Erlhagen, W., Schöner, G.: Dynamic field theory of movement preparation. Psychol. Rev. 109, 545–572 (2002)CrossRefGoogle Scholar
  11. 11.
    Erlhagen, W., Mukovskiy, A., Bicho, E.: A dynamic model for action understanding and goal-directed imitation. Brain Res. 1083, 174–188 (2006)CrossRefGoogle Scholar
  12. 12.
    Guo, Y., Chow, C.C.: Existence and stability of standing pulses in neural networks: I. existence. SIAM J. Appl. Dyn. Sys. 4, 217–248 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Taylor, J.G.: Neural bubble dynamics in two dimensions: foundations. Bioligal Cybernetics 80, 393–409 (1999)zbMATHCrossRefGoogle Scholar
  14. 14.
    Erlhagen, W., Bicho, E.: The dynamic neural field approach to cognitive robotics. J. Neural. Eng. 3, R36–R54 (2006)CrossRefGoogle Scholar
  15. 15.
    Trappenberg, T.P.: Fundamentals of computational neuroscience. Oxford University Press, New York (2002)Google Scholar
  16. 16.
    Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Cuijpers, R.H., van Schie, H.T., Koppen, M., Erlhagen, W., Bekkering, H.: Goals and means in action observation: a computational approach. Neural Netw. 19, 311–322 (2006)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Raymond H. Cuijpers
    • 1
  • Wolfram Erlhagen
    • 2
  1. 1.Nijmegen Institute for Cognition and InformationRadboud UniversityNijmegenThe Netherlands
  2. 2.Department of Mathematics for Science and TechnologyUniversity of MinhoGuimarãesPortugal

Personalised recommendations