Skip to main content

Blind Source-Separation in Mixed-Signal VLSI Using the InfoMax Algorithm

  • Conference paper
Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5164))

Included in the following conference series:

Abstract

This paper describes a VLSI implementation of the InfoMax algorithm for Independent Component Analysis in mixed-signal CMOS. Our design uses on-chip calibration techniques and local adaptation to compensate for the effect of device mismatch in the arithmetic modules and analog memory cells. We use our design to perform two-input blind source-separation on mixtures of audio signals, and on mixtures of EEG signals. Our hardware version of the algorithm successfully separates the signals with a resolution within less than 10% of a software implementation of the algorithm. The die area of the circuit is 0.016mm2 and its power consumption is 15μW in a 0.35μm CMOS process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Components Analysis, vol. 1. John Wiley and Sons, INC., New York (2001)

    Google Scholar 

  2. Comon, P.: ndependent Component Analysis - A New Concept? Signal Processing 3(36), 214–287 (1994)

    Google Scholar 

  3. Bell, A.J., Sejnowski, T.J.: The Independent Components of Natural Scenes are Edge Filters. Vision Research 37(23), 3327–3338 (1997)

    Article  Google Scholar 

  4. Cardoso, J.: Infomax and Maximum Likelihood for Blind Source Separation. IEEE Signal Processing Letters 4, 112–114 (1997)

    Article  Google Scholar 

  5. Lee, T.W., Girolami, M., Sejnowski, T.J.: Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources. Neural Computation 11(2), 417–441 (1999)

    Article  Google Scholar 

  6. Bell, A.J., Sejnowski, T.J.: An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation 7(6), 1129–1159 (1995)

    Article  Google Scholar 

  7. Carvajal, G., Figueroa, M., Bridges, S.: Effects of Analog-VLSI Hardware on the Performance of the LMS Algorithm. In: International Conference on Artificial Neural Networks (ICANN), Athens, Greece, 10-14 September 2006, pp. 963–973 (2006)

    Google Scholar 

  8. Hairai, Y., Nishizawa, K.: Hardware Implementation of a PCA Learning Network by an Asynchronous PDM Digital Circuit. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN), vol. 2(2), pp. 65–70 (2000)

    Google Scholar 

  9. Figueroa, M., Bridges, S., Diorio, C.: On-Chip Compensation of Device-Mismatch Effects in Analog VLSI Neural Networks. In: Advances in Neural Information Processing Systems 17. MIT Press, Cambridge (2005)

    Google Scholar 

  10. Carvajal, G., Valenzuela, W., Figueroa, M.: Subspace-Based Face Recognition in Analog VLSI. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems 20. MIT Press, Cambridge (2008)

    Google Scholar 

  11. Delorme, A., Makeig, S.: EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. Journal of Neuroscience Methods 134, 9–21 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Valenzuela, W., Carvajal, G., Figueroa, M. (2008). Blind Source-Separation in Mixed-Signal VLSI Using the InfoMax Algorithm. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87559-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87559-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87558-1

  • Online ISBN: 978-3-540-87559-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics