Blind Source-Separation in Mixed-Signal VLSI Using the InfoMax Algorithm

  • Waldo Valenzuela
  • Gonzalo Carvajal
  • Miguel Figueroa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5164)


This paper describes a VLSI implementation of the InfoMax algorithm for Independent Component Analysis in mixed-signal CMOS. Our design uses on-chip calibration techniques and local adaptation to compensate for the effect of device mismatch in the arithmetic modules and analog memory cells. We use our design to perform two-input blind source-separation on mixtures of audio signals, and on mixtures of EEG signals. Our hardware version of the algorithm successfully separates the signals with a resolution within less than 10% of a software implementation of the algorithm. The die area of the circuit is 0.016mm2 and its power consumption is 15μW in a 0.35μm CMOS process.


Independent Component Analysis Learning Rule Reconstruction Error Audio Signal Independent Component Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hyvärinen, A., Karhunen, J., Oja, E.: Independent Components Analysis, vol. 1. John Wiley and Sons, INC., New York (2001)Google Scholar
  2. 2.
    Comon, P.: ndependent Component Analysis - A New Concept? Signal Processing 3(36), 214–287 (1994)Google Scholar
  3. 3.
    Bell, A.J., Sejnowski, T.J.: The Independent Components of Natural Scenes are Edge Filters. Vision Research 37(23), 3327–3338 (1997)CrossRefGoogle Scholar
  4. 4.
    Cardoso, J.: Infomax and Maximum Likelihood for Blind Source Separation. IEEE Signal Processing Letters 4, 112–114 (1997)CrossRefGoogle Scholar
  5. 5.
    Lee, T.W., Girolami, M., Sejnowski, T.J.: Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources. Neural Computation 11(2), 417–441 (1999)CrossRefGoogle Scholar
  6. 6.
    Bell, A.J., Sejnowski, T.J.: An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation 7(6), 1129–1159 (1995)CrossRefGoogle Scholar
  7. 7.
    Carvajal, G., Figueroa, M., Bridges, S.: Effects of Analog-VLSI Hardware on the Performance of the LMS Algorithm. In: International Conference on Artificial Neural Networks (ICANN), Athens, Greece, 10-14 September 2006, pp. 963–973 (2006)Google Scholar
  8. 8.
    Hairai, Y., Nishizawa, K.: Hardware Implementation of a PCA Learning Network by an Asynchronous PDM Digital Circuit. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN), vol. 2(2), pp. 65–70 (2000)Google Scholar
  9. 9.
    Figueroa, M., Bridges, S., Diorio, C.: On-Chip Compensation of Device-Mismatch Effects in Analog VLSI Neural Networks. In: Advances in Neural Information Processing Systems 17. MIT Press, Cambridge (2005)Google Scholar
  10. 10.
    Carvajal, G., Valenzuela, W., Figueroa, M.: Subspace-Based Face Recognition in Analog VLSI. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems 20. MIT Press, Cambridge (2008)Google Scholar
  11. 11.
    Delorme, A., Makeig, S.: EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. Journal of Neuroscience Methods 134, 9–21 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Waldo Valenzuela
    • 1
  • Gonzalo Carvajal
    • 1
  • Miguel Figueroa
    • 1
  1. 1.Department of Electrical EngineeringUniversidad de ConcepciónConcepciónChile

Personalised recommendations