Implementation of Central Pattern Generator in an FPGA-Based Embedded System

  • Cesar Torres-Huitzil
  • Bernard Girau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5164)


This paper proposes an embedded system on a chip to generate locomotion patterns of periodic rhythmic movements inspired by biological neural networks called Central Pattern Generators (CPGs) found in animal nervous system. The proposed system contains a custom digital module, attached to an embedded processor, that mimics the functionality and organization of the fundamental Amari-Hopfield CPG. In order to reduce the CPG hardware integration complexity as well as to provide flexibility, an embedded linux operating system running on a processor is used to deal with the CPG interfacing in a high level transparent way for application development. The system is implemented on a Field Programmable Gate Array (FPGA) device providing a compact, flexible and expandable solution for generating periodic rhythmic patterns in robot control applications. Results show that the obtained waveforms from the FPGA implementation agree with software simulations and preserve the easiness of CPG parameter setting for adaptive behavior.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nakada, K., Asai, T., Amemiya, Y.: An analog cmos central pattern generator for interlimb coordination in quadruped locomotion. IEEE Transaction on Neural Networks 14(5), 1356–1365 (2003)CrossRefGoogle Scholar
  2. 2.
    Kier, R., James, J.C., Beer, R.D., Harrison, R.R.: Design and implementation of multipattern generators in analog vlsi. IEEE Transactions on Neural Networks 17(4), 1025–1038 (2006)CrossRefGoogle Scholar
  3. 3.
    Still, S., Hepp, K., Douglas, R.J.: Neuromorphic walking gait control. IEEE Transactions on Neural Networks 17(2), 496–508 (2006)CrossRefGoogle Scholar
  4. 4.
    DeHon, A.: The density advantage of configurable computing. IEEE Computer 33(2), 41–49 (2000)Google Scholar
  5. 5.
    Dan, H.: Digital VLSI Neural Networks. In: The Handbook of Brain Theory and Neural Networks, 2nd edn. (2002)Google Scholar
  6. 6.
    Girau, B., Torres-Huitzil, C.: Massively distributed digital implementation of an legion network for visual scene segmentation. Neurocomputing 50, 1186–1197 (2007)CrossRefGoogle Scholar
  7. 7.
    Vassiliadis, S., Zhang, M., Delgado-Frias, J.: Elementary function generators for neural network emulators. IEEE Transactions on Neural Networks 11(6), 1438–1449 (2000)CrossRefGoogle Scholar
  8. 8.
    Torres-Huitzil, C., Girau, B., Gauffriau, A.: Hardware/software co-design for embedded implementation of neural networks. In: Diniz, P.C., Marques, E., Bertels, K., Fernandes, M.M., Cardoso, J.M.P. (eds.) ARCS 2007. LNCS, vol. 4419, pp. 167–178. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Lee, G., Milne, G.: Programming paradigms for reconfigurable computing. Microprocessors and Microsystems 29, 435–450 (2005)CrossRefGoogle Scholar
  10. 10.
    Inc., X.: Microblaze Processor Reference Guide. Version 8.0 (2007)Google Scholar
  11. 11.
    Rahavan, P., Lad, A., Neelakandan, S.: Embedded Linux System Design and Development. Averback Ed. (2005)Google Scholar
  12. 12.
    Muthuswany, B.: Implementing central pattern generators for bipedal walkers usisng cellular neural networks. Master’s thesis, Electrical Engineering, and University of California, Berkeley (2005)Google Scholar
  13. 13.
    Torres-Huitzil, C.: A bit-stream pulse-based digital neuron model for neural networks. In: King, I., Wang, J., Chan, L.-W., Wang, D. (eds.) ICONIP 2006. LNCS, vol. 4234, pp. 1150–1159. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Cesar Torres-Huitzil
    • 1
  • Bernard Girau
    • 2
  1. 1.Information Technology DepartmentPolytechnic University of VictoriaCiudad VictoriaMexico
  2. 2.CORTEX team, LORIA-INRIA Grand EstCampus ScientifiqueVandoeuvre-les-Nancy CedexFrance

Personalised recommendations