Advertisement

Astrobiological Aspect of Chemolithoautotrophic Bacterial Activity in the Role of Black Shale-Hosted Mn Mineralization and Cathodoluminescence Study of High Mn-Bearing Carbonates

  • Márta Polgári
  • Arnold Gucsik
  • Bernadett Bajnóczi
  • Jens Gótze
  • Kazue Tazaki
  • Hiroaki Watanabe
  • Tamás Vigh
Chapter

Keywords

Black Shale Manganese Deposit Carbonatic Manganese Insight Into Biogenic Mineral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asada R, Tazaki K (2000) Observation of bio-kaolinite clusters. Clay Science, Japan 40:24–37Google Scholar
  2. Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New YorkGoogle Scholar
  3. Bargar JR, Tebo BM, Bergmann U, Webb SM, Glatzel P, Chiu VQ, Villalobos M (2005) Biotic and abiotic products of Mn(II) oxidation by spores of the marine Bacillus sp. Strain SG-1. Am Mineral 90:143–154CrossRefGoogle Scholar
  4. Beveridge TL (1989) Metal ions and bacteria. In: Beveridge TL, Doyle RJ (eds) Metal ions and bacteria. Wiley, New York, pp 1–29Google Scholar
  5. Boston PJ, Spilde MN, Northup DE, Melim LA, Soroka DS, Kleina LG, Lavoie KH, Hose LD, Mallory LM, Dahm CN, Crossey LJ, Schelble RT (2001) Cave biosignature suites: microbes, minerals, and Mars. Astrobiology 1:25–55CrossRefGoogle Scholar
  6. Chapnick S, Moore WS, Nealson KH (1982) Microbially mediated manganese oxidation in a freshwater lake. Limnol Oceanogr 17:1004–1014Google Scholar
  7. Chukrov FV, Drits VA, Gorschkov AI, Sakharov BA, Dikov YP (1987) Structural models of vernadite. Int Geol Rev 29:1337–1347CrossRefGoogle Scholar
  8. Cowen JP, Massoth GJ, Baker ET (1986) Bacterial scavenging of Mn and Fe in a mid- to far-field hydrothermal particle plume. Nature 322:169–171CrossRefGoogle Scholar
  9. Cseh Németh J, Grasselly Gy (1966) Data on the geology and mineralogy of the manganese ore deposit of Ürküt II. Acta Miner Petr Univ Szegediensis 17: 2, 89–114Google Scholar
  10. Cseh Németh J, Grasselly Gy, Szabó Z (1980) Sedimentary manganese deposits of Hungary. In: Varentsov IM, Grasselly Gy (eds) Geology and geochemistry of manganese II. Akadémiai Kiadó, Budapest pp 199–221Google Scholar
  11. Davies SHR, Morgan JJ (1989) Manganese (II) oxidation kinetics on metal oxide surfaces. J Colloid Inter Sci 129: 63–77CrossRefGoogle Scholar
  12. Denson J, Ivey DM, Sears DWG, GucsikA, Vidéki R (2007) Cathodoluminescence and its application for biosignature analysis of Mn-containing biogenic minerals: a review. Lunar Planet Sci XXXVIII 1009.pdfGoogle Scholar
  13. Edenborn HM, Paquin Y, Chateauneuf G (1985) Bacterial contribution to manganese oxidation in a deep coastal sediment. Estuar Coast Shelf Sci 21: 6 801–815CrossRefGoogle Scholar
  14. Ehrlich HL (1990) Geomicrobiology. 2nd edn. M. Dekker, New YorkGoogle Scholar
  15. Ehrlich HL (1999) Microbes as geologic agents: Their role in mineral formation. Geomicro J 16:135–153CrossRefGoogle Scholar
  16. El Ali A, Barbin V, Calas G, Cervelle B, Ramseyer K, Bouroulec J (1993) Mn2+-activated luminescence in dolomite, calcite and magnesite: quantitative determination of manganese and site distribution by EPR and CL spectroscopy. Chem Geol 104:189–202CrossRefGoogle Scholar
  17. Emerson S, Kalhorn S, Jacobs L, Tebo BM, Nealson KH, Rosson RA. (1982) Environmental oxidation rate of manganese(II) – bacterial catalysis. Geochim Cosmochim Acta 46:6 1073–1079CrossRefGoogle Scholar
  18. Fan D, Yang P, Wang R (1999) Characteristics and origin of the Middle Proterozoic Dongshuichang chambersite deposit, Jixian, Tianjin, China. Ore Geol Rev 15:15–29CrossRefGoogle Scholar
  19. Farkas L, Bolzenius BH, Schäfer, W, Will G (1988) The crystal structure of kutnohorite CaMn(CO3)2. Neues Jb Miner Monat 12: 539–546Google Scholar
  20. Ferris FG, Beveridge TG, Fyfe WS (1986) Iron-silica crystallite nucleation by bacteria in geothermal sediment. Nature 320:609–611CrossRefGoogle Scholar
  21. Ferris FG, Fyfe WS, Beveridge TJ (1987a) Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chem Geol 63: 225–232CrossRefGoogle Scholar
  22. Ferris FG, Fyfe WS, Beveridge TJ (1987b) Manganese oxide deposition in a hot spring microbial mat. Geomicrobiol J 5:33–42Google Scholar
  23. Fortin D (2004) What biogenic minerals tell us. Science 303:1618–1619CrossRefGoogle Scholar
  24. Frondel C, Bauer L (1955) Kutnahorite: A manganese dolomite: CaMn(CO3)2. Am Mineral 40:748–760Google Scholar
  25. Gaft M, Gorobets B, Naumova I, Mironova N, Grinvald G (1981) Correlation of luminescent properties with the crystallography of manganese minerals (in Russian). Mineralogiceskij Zurnal 3:80–90Google Scholar
  26. Gaft M, Reisfeld R, Panczer G (2005) Modern luminescence spectroscopy of minerals and materials. Springer Verlag, BerlinGoogle Scholar
  27. Géczy B (1973) The origin of the Jurassic faunal provinces and the Mediterranean plate tectonics. Ann Univ Sci R Eótvós (Budapest) Sect Geol 16: 99–114Google Scholar
  28. Geesey GG, Jang L (1989) Intractions between metal ions and capsular polymers. In: Beveridge TL, Doyle RJ (eds) Metal ions and bacteria. Wiley, New York, pp 325–357Google Scholar
  29. Giovanoli R (1980) On natural and synthetic Mn nodules. In: Varentsov IM, Grasselly Gy (eds) Geology and geochemistry of manganese I. Akadémiai Kiadó, Budapest pp 159–202Google Scholar
  30. Gorobec B, Gaft M, Laverova L (1978) Photoluminescence of manganese minerals (in Russian). J Appl Spectrosc 28:750–752CrossRefGoogle Scholar
  31. Haberman D, Neuser RD, Richter DK (2000) Quantitative high resolution spectral analysis of Mn2+ in sedimentary calcite. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminesce in geosciences. Springer Verlag, Berlin, pp 331–358Google Scholar
  32. Hanczyc MM, Fujikawa SM, Szostak JW (2003) Experimental models of primitive cellular compartments: Encapsulation, growth, and division. Science 24:302, 618–622CrossRefGoogle Scholar
  33. Hazen RM (2005) Genesis: Rocks, minerals, and the geochemical origin of life. Elements 1:135–137CrossRefGoogle Scholar
  34. Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100ˆC by Pyrobaculum islandicum. Appl Environ Microbiol 66:1050–1056CrossRefGoogle Scholar
  35. Krumbein WE (1983) Microbial geochemistry. Blackwell Scientific Publications, Alden Press, OxfordGoogle Scholar
  36. Lanson B, Drits VA, Silwester E, Manceau A (2000) Sructure of H-exchanged hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at low pH. Am Mineral 85:826–838Google Scholar
  37. Larsen I, Little B, Nealson KH, Ray R, Stone A, Tian J (1998) Manganite reduction by Shewanella putrefaciens MR-4. Am Mineral 83:1564–1572Google Scholar
  38. Lumsen DN, Lloyd RV (1984) Mn(II) partitioning between calcium and magnesium sites in studies of dolomite origin. Geochim Cosmochim Acta 48:1861–1865CrossRefGoogle Scholar
  39. Machel HG (2000) Application of cathodoluminescence to carbonate diagenesis. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in Geosciences. Springer Verlag, Berlin, pp 271–301Google Scholar
  40. Machel HG, Mason RA, Mariano AN, Mucci A (1991) Causes and emission of luminescence in calcite and dolomite. In: Barker CE, Kopp OC (eds) Luminescence microscopy and spectroscopy: Qualitative and quantitative applications. Society of sedimentary geologists, Short Course 25, pp 9–25Google Scholar
  41. Mandernack KW, Post J, Tebo BM (1995) Manganese mineral formation by bacterial spores of the marine Bacillus, strain SG-1: Evidence for the direct oxidation of Mn(II) to Mn(IV). Geochim Cosmochim Acta 59:4393–4408CrossRefGoogle Scholar
  42. Mandernack KW, Tebo BM (1993) Manganese scavenging and oxidation at hydrothermal vents in vent plumes. Geochim Cosmochim Acta 57:3907–3923CrossRefGoogle Scholar
  43. Marfunin AS (1979) Spectroscopy, luminescence and radiation centres in minerals. Springer, BerlinGoogle Scholar
  44. Marshall DJ (1988) Cathodoluminescence of geological materials. Unwin-Hyman, BostonGoogle Scholar
  45. Mason RA (1987) Ion microprobe analysis of trace elements in calcite with an application to the cathodoluminescence zonation of limestone cements from the Lower Carboniferous of South Wales, U.K. Chem Geol 64: 209–224CrossRefGoogle Scholar
  46. Mason RA, Mariano AN (1990) Cathodoluminescence activation in manganese-bearing and rare earth-bearing synthetic calcites. Chem Geol 88:191–206CrossRefGoogle Scholar
  47. McKay DS, Gibson EK Jr, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, Chillier XDF, Maechling CR, Zare RN (1996) Search for past life on mars: Possible relic biogenic activity in martian meteorite ALH84001. Science 273:924–930CrossRefGoogle Scholar
  48. Morgan JJ (2005) Kinetics of reaction between O2 and Mn(II) species in aqueous solution. Geochim Cosmochim Acta 69:1 35–48CrossRefGoogle Scholar
  49. Nealson KH, Tebo BM, Rosson RA (1988) Occurrence and mechanisms of microbial oxidation of manganese. Adv Appl Microbiol 33:279–318CrossRefGoogle Scholar
  50. Neuser RD (1995) A new high-intensity cathodoluminescence microscope and its application to weakly luminescing minerals. Bochumer Geol Geotech Arb 44:116–118Google Scholar
  51. Okita PM (1988) Geochemistry and mineralogy of the molango manganese orebody, Hidalgo State, Mexico. Ph.D. Thesis, Cincinatti UniversityGoogle Scholar
  52. Peacor D, Essene E, Gaines A (1987) Petrologic and crystal-chemical implications of cation order-disorder in kutnahorite [CaMn(CO3)2]. – Am Mineral 72:319–328Google Scholar
  53. Polgári M (1993) Manganese geochemistry reflected by black shale formation and diagenetic processes – Model of formation of the carbonatic manganese ore of Ürküt. Spec series Hung Geol Inst Karpati Publish House, UshgorodGoogle Scholar
  54. Polgári M, Bajnóczi B, Kovács Kis V, Gótze J, Dobosi G, Tóth M, Vigh T (2007b) Mineralogical and cathodoluminescence characteristics of Ca-rich kutnohorite from the Ürküt Mn-carbonate mineralization, Hungary. Mineral Mag 71:5 493–508CrossRefGoogle Scholar
  55. Polgári M, Dobosi G, Horváth P, Rálisch-Felgenhauer E, Vigh T. (2003b) As-bearing pyrite occurrence at Ürküt and in the Jurassic layers of the Iharosberény-I drillcore. Bull Hung Geol Soc 133:4 469–475Google Scholar
  56. Polgári M, Hein JR, Tóth M, Vigh T, Bíró L (2007a) Did hydrothermal fluids contribute to the Huge Ürküt Carbonate ore Body? Geochim Cosmochim Acta Suppl Abst Vol A801Google Scholar
  57. Polgári M, Okita PM, Hein JR (1991) Stable Isotope Evidence for the Origin of the Ürküt Manganese Ore Deposit, Hungary. J Sed Petr 61:3 384–393Google Scholar
  58. Polgári M, Philippe M, Szabó-Drubina M, Tóth M (2005) Manganese-impregnated wood from a Toarcian manganese ore deposit, Eplény Mine, Bakony Mts, Transdanubia, Hungary. Neues Jb Geol Paläont Monat 3:175–192Google Scholar
  59. Polgári M, Szabó Z, Szederkényi T (eds) (2000) Manganese Ores in Hungary – In commemoration of professor Gyula Grasselly - Mangánércek Magyarországon – Grasselly Gyula akadémikus emlékére. Regional Committee Hung Acad Sci Juhász Publish House, SzegedGoogle Scholar
  60. Polgári M, Szabó-Drubina M, Abonyi Tóth Zs (2006b) Role of hydrothermal supply and bacterial metal enrichment effects in black shale hosted Mn-carbonate mineralization, Ürküt, Hungary, Europe. 12th IAGOD Congr Moscow, Russia, Abst CD ROMGoogle Scholar
  61. Polgári M, Szabó-Drubina M, Szabó Z (2004) Theoretical model for the Mid-European Jurassic Mn-carbonate mineralization Ürküt, Hungary. Bull Geosci Czech Geol Surv 79:1 53–61Google Scholar
  62. Polgári M, Szabó-Drubina M, Tóth M, Szabó Z, Abonyi Tóth Zs (2003a) Submarine primary Sr-rich Mn-oxide mineralization in the Jurassic Transdanubian Range (Hungary). In: DG Eliopoulos et al. (eds) Proc 7th Biennial SGA Meet Athens, Greece, Millpress Rotterdam pp 1233–1236Google Scholar
  63. Polgári M, Tazaki K, Watanabe H, Vigh T, Gucsik A (2006a) Geochemical aspect of chemolithoautotrophic bacterial activity in the role of black shale hosted Mn mineralization, Jurassic age, Hungary, Europe. Clay Sci 12(Suppl 2):233–239Google Scholar
  64. Reeder R (1983) Crystal chemistry of the rhombohedral carbonates. In: Carbonates. Mineralogy and chemistry. Miner Soc Am Rev Mineral 11:1–47Google Scholar
  65. Reynolds RC Jr (1989) Diffraction by Small and Disordered Crystals. In: Bish DL, Post JE (eds) Modern powder diffraction. Mineral Soc Am Rev Miner Washington DC 20:145–182Google Scholar
  66. Richter DK, Gótte T, Gótze J, Neuser RD (2003) Progress in application of cathodoluminescence (CL) in sedimentary petrology. Mineral Petrol 79:127–166CrossRefGoogle Scholar
  67. Roy S (1981) Manganese deposits. Academic Press, LondonGoogle Scholar
  68. Sara M, Sleytr UB (2000) S-layer proteins. J Bacteriol 182:859–868CrossRefGoogle Scholar
  69. Sunda WG, Huntsman SA (1987) Microbial oxidation of manganese in a North-Carolina Estuary. Limnol Oceanogr 32:3 552–564.Google Scholar
  70. Sung W, Morgan JJ (1981) Oxidative removal of Mn(II) from solution catalyzed by the γ-FeOOH (lepidocrocite) surface. Geochim Cosmochim Acta 45:2377–2383CrossRefGoogle Scholar
  71. Szabó Z, Grasselly Gy, Cseh Németh J (1981) Some conceptual questions regarding the origin of manganese in the Ürküt Deposit, Hungary. Chem Geol 34: 19–29Google Scholar
  72. Szabó-Drubina M (1959) Manganese deposits of Hungary. Econ Geol 54:1078–1093Google Scholar
  73. Tashiro Y, Tazaki K (1999) The primitive stage of microbial mats comprising iron hydroxides. Earth Sci 53: 27–35Google Scholar
  74. Tazaki K (1997) Biomineralization of layer silicates and hydrated Fe/Mn oxides in microbial mats: An electron microscopical study. Clays and Clay Miner 45:203–212CrossRefGoogle Scholar
  75. Tazaki K (2000) Formation of banded iron-manganese structures by natural microbial communities. Clays Clay Miner 48:511–520CrossRefGoogle Scholar
  76. Tebo BM (1991) Manganese(II) oxidation in the suboxic zone of the Black-Sea. Deep Sea Res A. Oceanograph Res Papers Suppl 2 38:S883–S905Google Scholar
  77. Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM (2004) Manganese biooxides: properties and mechanisms of formation. Ann Rev Earth Planet Sci 32:287–328CrossRefGoogle Scholar
  78. Tebo BM, Ghiorse WC, Van Waasbergen LGV, Siering PL, Caspi R (1997) Bacterially mediated mineral formation: Insights into manganese (II) Oxidation from molecular genetic and biochemical studies. In: Nealson KH, Banfield JF (eds) Geomicrobiology: Interactions between microbes and minerals. Miner Soc Am Washington DC 35: pp 225–266Google Scholar
  79. Tebo BM, Nealson KH, Emerson S, Jacobs L (1984) Microbial mediation of Mn(II) and Co(II) precipitation at the O2/H2S interfaces in 2 anoxic fjords. Limnol Oceanogr 29(6):1247–1258CrossRefGoogle Scholar
  80. Tebo BM, Nealson KH, Rosson RA (1988) Occurrence and mechanisms of microbial oxidation of mangane. Adv Appl Microbiol 33:279–318CrossRefGoogle Scholar
  81. Theng BKG, Orchard VA (1995) Interactions of clays with microorganisms and bacterial survival in soil: A physicochemical perspective. In: Huang PM, Berthelin J, Bollag JM, McGill WB, Page AL (eds) Environmental impact of soil component interactions. CRC Press, Florida, 3:123–139Google Scholar
  82. Tipping E, Hetherington NB, Hilton J, Thompson DW, Bowles E, Hamilton Taylor J (1985) Artifacts in the use of selective chemical-extraction to determine distributions of metals between oxides of manganese and iron. Anal Chem 57(9): 1944–1946CrossRefGoogle Scholar
  83. Ueshima U, Mogi K, Tazaki K (2000) Microbes associated with bentonite. Clay Sci 39:171–183Google Scholar
  84. Villalobos M, Toner B, Bargar J, Sposito G (2003) Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochim Cosmochim Acta 67:2649–2662CrossRefGoogle Scholar
  85. Vórós A, Galácz A (1998) Jurassic palaeogeography of the Transdanubian Central Range (Hungary). Rivista Italiana di Paleontol Stratigr 104:69–84Google Scholar
  86. Walker G, Abumere OE, Kamaluddin B (1989) Luminescence spectroscopy of Mn2+ centres in rockforming carbonates. Miner Mag 53:201–211CrossRefGoogle Scholar
  87. Webb SM, Bargar JR, Dick GJ, Johnson HA, McCarthy JK, Tebo BM (2004) Insights into the mechanism of enzymatic manganese(II) oxidation by diverse bacterial species. Symposium on Bacterially Mediated Mn and Fe Oxidation in the Biosphere. Geochemistry Division Abstr 227th ACS National Meeting Am Chem Soc Anaheim, California, p 62Google Scholar
  88. Webb SM, Dick GJ, Bargar JR, Tebo BM (2005a) Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II). Microbiol 102(15):5558–5563Google Scholar
  89. Webb SM, Tebo BM, Bargar JR (2005b) Structural characterization of biogenic Mn oxides produced in seawater by the marine bacillus sp. strain SG-1. Am Mineral 90(8–9):1342–1357Google Scholar
  90. Weiszburg TG, Tóth E, Beran A (2004) Celadonite, the 10-A green clay mineral of the manganese carbonate ore, Ürküt, Hungary. Acta Miner Petr Szeged 45:1 65–80Google Scholar
  91. Wilson DE (1980) Surface and complexation effects on the rate of Mn(II) oxidation in natural waters. Geochim Cosmochim Acta 44:1311–1317Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Márta Polgári
    • 1
  • Arnold Gucsik
  • Bernadett Bajnóczi
  • Jens Gótze
  • Kazue Tazaki
  • Hiroaki Watanabe
  • Tamás Vigh
  1. 1.Institute for Geochemical Research Hungarian Academy of Sciences H-1112 BudapestBudaórsi str. 45Hungary

Personalised recommendations