Cathodoluminescence Microscopy and Spectroscopy of Lunar Rocks and Minerals

  • Jens Götze


Rare Earth Element Lunar Sample Lunar Rock Mare Basalt Lunar Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akridge DG, Akridge JMC, Batchelor JD, Benoit PH, Brewer J, DeHart JM, Keck BD, Lu J, Meier A, Penrose M, Schneider DM, Sears DWG, Symes SJK, Zhang Y (2004) Photomosaics of cathodoluminescence of 60 sections of meteorites and lunar samples. J Geophys Res 109:07S03CrossRefGoogle Scholar
  2. Aoudjehane C and Jambon A (2007) Determination of silica polymorphs in eucrites by cathodoluminescence. Lunar Planet Sci Conf XXXVIII, Abstracts, p 1714Google Scholar
  3. Benstock EJ, Buseck P, Steele IM (1997) Cathodoluminescence of meteoritic and synthetic forsterite at 296 and 77 K using TEM. Amer Mineral 82:310–315Google Scholar
  4. Blanc P, Baumer A, Cesbron F, Ohnenstetter D, Panczer G, Remond G (2000) Systematic cathodoluminescence spectral analysis of synthetic doped minerals: anhydrite, apatite, calcite, fluorite, scheelite and zircon. In: Pagel, M, Barbin, V, Blanc, P, Ohnenstetter, D (eds) Cathodoluminescence in geosciences Springer Verlag, Berlin, Heidelberg, New York, pp 127–160Google Scholar
  5. Braddy D, Hutcheon ID, Price PB (1975) Crystal chemistry of Pu and U and concordant fission track ages of lunar zircons and whitlockites. Proc Lunar Sci Conf 6:3587–3600Google Scholar
  6. Burns RG, Vaughan DJ, Abu-Eid RM, Witner M (1973) Spectral evidence for Cr3+, Ti3+, and Fe2+ rather than Cr2+ and Fe3+ in lunar ferromagnesian silicates. Proc Fourth Lunar Sci Conf, Geochim Cosmochim Acta, Suppl 4:983–994Google Scholar
  7. Cameron AGW (1996) The origin of the Moon and the single impact hypothesis. Icarus 126:126–137CrossRefGoogle Scholar
  8. Cesbron F, Blanc P, Ohnenstetter D, Remond G (1995) Cathodoluminescence of rare earth doped zircons I Their possible use as reference materials. Scanning Microsc (Supplement) 9:35–56Google Scholar
  9. DeHart JM and Lofgren GE (1993) Cathodoluminescence properties of components in enstatite chondrites. Lunar Planet Sci Conf XXIV, Abstract, 387–388Google Scholar
  10. Delano JW (1986) Pristine lunar glasses: criteria, data, and implications. Proc Lunar Planet Sci Conf 16:D201–213Google Scholar
  11. Delano JW, Lindsley DH, Rudowski R (1981) Glasses of impact origin from Apollo 11, 12, 15, and 16: evidence for fractional vaporization and mare/highland mixing. Proc Lunar Planet Sci Conf 12B:339–370Google Scholar
  12. Dowty E (1977) Phosphate in Angra DOS REIS: structure and composition of the Ca3(PO4)3 minerals. Earth Planet Sci Letters 35:347–351CrossRefGoogle Scholar
  13. Forester DW (1973) Mössbauer search for ferric oxide phases in lunar materials and simulated lunar materials. Proc Fourth Lunar Sci Conf, Geochim Cosmochim Acta, Suppl 4:2697–2707Google Scholar
  14. Gaft M, Reisfeld R, Panczer G (2005) Luminescence spectroscopy of minerals and materials. Springer-Verlag, Berlin Heidelberg, 356 pGoogle Scholar
  15. Gay P, Bancroft GM, Bown MG (1970) Diffraction and Mössbauer studies of minerals from lunar soils and rocks. Proc Apollo 11 Lunar Sci Conf1:351–362Google Scholar
  16. Geake JE, Dollfus A, Garlick GFJ, Lamb W, Walker G, Steigmann GA, Titulaer C (1970) Luminescence, electron paramagnetic resonance and optical properties of lunar material from Apollo 11. Proceedings Apollo 11 Lunar Sci Conf 3:2127–2147Google Scholar
  17. Geake JE, Walker G, Mills AA, Garlick GFJ (1971) Luminescence of Apollo lunar samples. Proc Second Lunar Sci Conf 3:2265–2275Google Scholar
  18. Geake JE, Walker G, Telfer DJ, Mills AA, Garlick GFJ (1972) Luminescence of lunar, terrestrial, and synthesited plagioclase, caused by Mn2+ and Fe3+. Proc Fourth Lunar Sci Conf 3:3181–3189Google Scholar
  19. Götze J, Kempe U (2008) A comparison of optical microscope (OM) and scanning electron microscope (SEM) based cathodoluminescence (CL) imaging and spectroscopy applied to geosciences. Miner Mag (submitted)Google Scholar
  20. Götze J, Habermann D, Kempe U, Neuser RD, Richter DK (1999a) Cathodoluminescence microscopy and spectroscopy of plagioclases from lunar soil (Luna20, Luna 24). Amer Mineral 84:1027–1032Google Scholar
  21. Götze J, Habermann D, Neuser RD, Richter DK (1999b) High-resolution spectrometric analysis of REE-activated cathodoluminescence (CL) in feldspar minerals. Chem Geol 153:81–91CrossRefGoogle Scholar
  22. Götze J, Krbetschek MR, Habermann D, Wolf D (2000) High-resolution cathodoluminescence of feldspar minerals. In: Pagel M, Barbin V, Blanc Ph, Ohnenstetter D (eds): Cathodoluminescence in geosciences Springer Verlag, Berlin Heidelberg New York Tokyo, pp. 245–270Google Scholar
  23. Götze J, Plötze M, Habermann D (2001) Cathodoluminescence (CL) of quartz: origin, spectral characteristics and practical applications. Mineral Petrol 71:225–250CrossRefGoogle Scholar
  24. Griffin WL, Amli R, Heier KS (1972) Whitlockite and apatite from lunar rock 14310 and from Ödegården, Norway. Earth Planet Sci Letters 15:53–58CrossRefGoogle Scholar
  25. Gucsik A, Koeberl C, Brandstätter F, Reimold WU, Libowitzky E (2002) Cathodoluminescence, electron microscopy, and Raman spectroscopy of experimentally shock-metamorphosed zircon. Earth Planet Sci Lett 202:495–509CrossRefGoogle Scholar
  26. Gucsik A, Nishido H, Ninagawa K, Toyoda S, Bidló A, Brezsnyánsky K, Tsuchiyama A (2005) Cathodoluminescence spectral studies of the experimentally shock-deformed plagioclase: A possible explanation of CL peak shifts. Lunar Planet Sci Conf XXXVI, Abstract 1239Google Scholar
  27. Gucsik A, Nishido H, Ninagawa K, Okumura T, Wilcox JZ, Urguiles E, Götze J, Bérczi Sz, Kereszturi A, Hargitai H, Polgári M, Nagy Sz (2006a) Cathodoluminescence and its application in the planetary sciences: A review. Annual Lunar Planet Sci Conf XXXVII, Abstract 1543Google Scholar
  28. Gucsik A, Bérczi Sz, Kereszturi A, Hargitai H, Nagy Sz (2006b) Shock metamorphism of zircon in nature and experiment: a review. Lunar Planet Sci Conf XXXVII, Abstract 1544Google Scholar
  29. Habermann D, Götze J, Neuser R, Richter DK (1997) The phenomenon of intrinsic cathodoluminescence: Case studies of quartz, calcite and apatite. Zentralblatt für Geologie und Paläontologie Teil 1, Heft 10–12:1275–1284Google Scholar
  30. Hutcheon ID and Price PB (1972) Plutonium-244 fission tracks: Evidence in a lunar rock 395 billion years old. Science 176/4037:909–911CrossRefGoogle Scholar
  31. Hutcheon ID, MacDougall D, Stevenson J (1974) Apollo 17 particle track studies: Surface residence times and fission track ages for orange glass and large boulders. Proc 5th lunar Conf In: Geochim Cosmochim Acta suppl 5, 3:2597–2608Google Scholar
  32. James O (1972) Lunar anorthosite 15415: texture, mineralogy, and metamorphic history. Science 175:432–436CrossRefGoogle Scholar
  33. Jollife BL (1993) A monazite-bearing clast in Apollo 17 melt breccia 24th. Lunar Planet Sci Conf Part 2, G-Mp:725–726Google Scholar
  34. Kaus A, Bischoff A (2000) Cathodoluminescence properties of shocked plagioclase. Meteoritics and Planet Sci 35:A86Google Scholar
  35. Kempe U and Götze J (2002) Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Mineral Mag 66:135–156CrossRefGoogle Scholar
  36. Kempe U, Gruner T, Nasdala L, Wolf D (2000) Relevance of cathodoluminescence fort he interpretation of U-Pb zircon ages, with an example of an application to a study of zircons from the Saxonian Granulite Complex, Germany. In: Pagel, M, Barbin, V, Blanc, P, Ohnenstetter, D (eds) (2000) Cathodoluminescence in geosciences Springer Verlag, Berlin Heidelberg New York, pp. 425–456Google Scholar
  37. Kirsh Y, Shoval S, Townsend PD (1987) Kinetics and emission spectra of thermoluminescence in the feldspars albite and microcline. Phys Stat Sol (a) 101:253–262CrossRefGoogle Scholar
  38. Kleinmann B (1969) The breakdown of zircon observed in the Libyan desert glass as evidence of its impact origin. Earth Planet Sci Lett 5:497–501CrossRefGoogle Scholar
  39. Krbetschek MR, Götze J, Irmer G, Rieser U, Trautmann T (2002) The red luminescence emission of feldspar and its wavelength dependence on K, Na, Ca - composition. Mineralogy and Petrology 76:167–177CrossRefGoogle Scholar
  40. Kusaba Y, Syono Y, Kikuchi M, Fukuoka K (1985) Shock behaviour of zircon: phase transition to scheelite structure and decomposition. Earth Planet Sci Lett 72:433–439CrossRefGoogle Scholar
  41. Marfunin AS (1979) Spectroscopy, luminescence and radiation centres in minerals. Springer-Verlag, Berlin, 352 pGoogle Scholar
  42. Marfunin AS, Bershov LV (1970) Electron-hole centers in feldspars and their possible crystalchemical and petrological significance (in Russ). Dokl AkadNauk 193:412–414Google Scholar
  43. Marshall DJ (1988) Cathodoluminescence of geological materials. Unwin-Hyman, Boston, 146 pGoogle Scholar
  44. Matyash IV, Bagmut NN, Litovchenko AS, Proshko VYa (1982) Electron paramagnetic resonance study of new paramagnetic centers in microcline-pethites from pegmatites. Phys Chem Miner 8:149–152CrossRefGoogle Scholar
  45. Mitchell RH, Xiong J, Mariano AN, Fleet ME (1997) Rare-earth-element-activated cathodoluminescence in apatite. Canadian Mineral 35:979–998Google Scholar
  46. Mora CI, Ramseyer K (1992) Cathodoluminescence of coexisting plagioclases, Boehls Butte anorthosite: CL activators and fluid flow paths. Amer Miner 77:1258–1265Google Scholar
  47. Nasdala L, Zhang M, Kempe U, Panzer G, Gaft M, Andrut M, Plötze M (2003) Spectroscopic methods applied to zircon. Rev Mineral Geochem 53/1:427–467CrossRefGoogle Scholar
  48. Petrov I, Yude F, Bershov LV, Hafner SS, Kroll H (1989) Order-disorder of Fe3+ ions over the tetrahedral positions in albite. Amer Mineral 74:604–609Google Scholar
  49. Petrov I, Mineeva RM, Bershov LV, Agel A (1993) EPR of [Pb-Pb]3+ mixed valence pairs in amazonite type microcline. Amer Mineral 78:500–510Google Scholar
  50. Pidgeon RT, Nemchin AA, Van Broswijk W, Geisler T, Meyer C, Compston W, Williams IS (2007) Complex history of a zircon aggregate from lunar breccia 73235. Geochim Cosmochim Acta 71:1370–1381CrossRefGoogle Scholar
  51. Remond G, Cesbron F, Chapoulie R, Ohnenstetter D, Roques-Carmes C, Schvoerer M (1992) Cathodoluminescence applied to the microcharacterization of mineral materials: A present status in experimentation and interpretation. Scann Micr 6:23–68Google Scholar
  52. Roedder E, Weiblein PW (1970) Lunar petrology of silicate melt inclusions, Apollo 11 rocks Proc Apollo 11. Lunar Sci Conf 1:801–837Google Scholar
  53. Shearer CK, Papike JJ (1993) Basaltic magmatism on the Moon: a perspective from volcanic picritic glass beds. Geochim Cosmochim Acta 57:4785–4812CrossRefGoogle Scholar
  54. Shearer CK, Papike JJ (1999) Magma evolution of the Moon. Amer Mineral 84:1469–1494Google Scholar
  55. Siegel GH, Marrone MJ (1981) Photoluminescence in as-drawn and irradiated silica optical fibers: An assessment of the role of nonbridging oxygen defect centres. J Non-Cryst Solids 45:235–247CrossRefGoogle Scholar
  56. Sippel RF (1965) Simple device for luminescence petrography. Rev Scient Instr 36:556–558CrossRefGoogle Scholar
  57. Sippel RF (1971) Luminescence petrography of the Apollo 12 rocks and comperative features in terrestrial rocks and meteorites. Proc Second Lunar Sci Conf 1:247–263Google Scholar
  58. Sippel RF, Spencer AB (1970a) Luminescence petrography and properties of lunar crystalline rocks and breccias. Proc Apollo 11 Lunar Sci Conf 3:2413–2426Google Scholar
  59. Sippel RF, Spencer AB (1970b) Cathodoluminescence properties of lunar rocks. Science 167/3918:677–679CrossRefGoogle Scholar
  60. Skuja L (1998) Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J Non-Crystall Solids 239:16–48CrossRefGoogle Scholar
  61. Smith JV (1974) Lunar Mineralogy: A heavenly detective story Presidential Address, Part I. Amer Mineral 59:231–243Google Scholar
  62. Smith JV, Stenstrom RC (1965): Electron-excited luminescence as a petrological tool. J Geol 73:627–635CrossRefGoogle Scholar
  63. Smith JV, Steel IM (1976) Lunar Mineralogy: A heavenly detective story, Part II. Amer Mineral 61:1059–1116Google Scholar
  64. Speit B, Lehmann G (1976) Hole centers in the feldspar sanidine. Phys stat solidi A36:471–481Google Scholar
  65. Steel IM (1986) Cathodoluminescence and minor elements in forsterites from extraterrestrial samples. Amer Mineral 71:966–970Google Scholar
  66. Steel IM (1989) Cathodoluminescence mineralogy of meteorites. Lunar Planet Sci Conf XX, Abstracts, 1052–1053Google Scholar
  67. Steel IM and Smith JV (1972) Ultrabasic lunar samples. Nat Phys Sci 240:5–6Google Scholar
  68. Steel IM, Smith JV, Skirius C (1985) Cathodoluminescence zoning and minor elements in forsterites from the Murchison (C2) and Allende (C3V) carbonaceous chondrites. Nature 313:294–297CrossRefGoogle Scholar
  69. Stevens Kalceff MA and Phillips MR (1995) Cathodoluminescence microcharacterization of the defect structure of quartz. Phys Rev B 52:3122–3134CrossRefGoogle Scholar
  70. Stirling JAR (2000) Preliminary results of cathodoluminescence spectral analysis of β-Ca-phosphates (“whitlockite”) in the Mars meteorite ALH84001. Lunar Planet Sci XXXI, Abstract 2021Google Scholar
  71. Stirling JAR, Venance K, Protheroe WJ Jr (2001) Cathodoluminescence analysis of Nakhla 1401 chloroapatites. Lunar Planet Sci XXXII, Abstract 1638Google Scholar
  72. Strunz H, Tennyson C (1982) Mineralogische Tabellen. Akad Verlagsgesellschaft Geest & Portig, Leipzig, 621 pGoogle Scholar
  73. Taylor DJ, McKeegan KD, Harrison TM, McCulloch M (2007) 176Lu-176Hf in lunar zircons: Identification of an early enriched reservoir on the Moon. Lunar Planet Sci Conf XXXVIII, Abstracts, 2130–2131Google Scholar
  74. Taylor SR (1982) Planetary Science: A Lunar perspective. Lunar and Planetary Institute, Houston, TexasGoogle Scholar
  75. Telfer DJ, Walker G (1975) Optical detection of Fe3+ in lunar plagioclase. Nature 258:694–695CrossRefGoogle Scholar
  76. Telfer DJ, Walker G (1978) Ligand field bands of Mn2+ and Fe3+ luminescence centres and their site occupancy in plagioclase feldspars. Mod Geol 6:199–210Google Scholar
  77. Vinogradov AP (1972) Preliminary data on lunar ground returned by automatic station Luna-20 (in Russian). Geokhimia 7:763–774Google Scholar
  78. Walker G (1985) Mineralogical applications of luminescence techniques In: Berry FJ and Vaughan DJ (eds): Chemical bonding and spectroscopy in mineral chemistry. University of Birmingham, pp. 103–140Google Scholar
  79. Warren PH (1990) Lunar anorthosites and the magma-ocean plagioclase-floating hypothesis. Amer Mineral 75:46–58Google Scholar
  80. Warren PH (1994) Lunar and martian meteorite delivery services. Icarus 111:338–363CrossRefGoogle Scholar
  81. White WB, Masako M, Linnehan DG, Furukawa T, Chandrasekhar BK (1986) Absorption and luminescence of Fe3+ in single-crystal orthoclase. Amer Mineral 71:1415–1419Google Scholar
  82. Wopenka B, Jollife BL, Zinner E, Kremser DT (1996) Trace element zoning and incipient metamictization in a lunar zircon: Application of three microprobe techniques. Amer Mineral 81:902–912Google Scholar
  83. Zeigler RA, Korotev RL, Jollif BL, Haskin LA, Flos C (2006) The geochemistry and provenance of Apollo 16 mafic glasses. Geochim Cosmochim Acta 70:6050–6067CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jens Götze
    • 1
  1. 1.TU Bergakademie FreibergInstitute of MineralogyBrennhausgasse 14Germany

Personalised recommendations