Impact Diamonds: Formation, Mineralogical Features and Cathodoluminescence Properties

  • Giovanni Pratesi


Natural Diamond Synthetic Diamond Ukrainian Shield Yellow Luminescence Diam Relat Mater 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott JI, Hough RM, Gilmour I, Pillinger CT (1996) Impact diamonds in glass from otting quarry, ries crater, Germany. Met Planet Sci 31:Abs A5Google Scholar
  2. Bachmann PK, Wiechert DU (1992) Optical characterization of diamond. Diam Rel Mat 1:422–433CrossRefGoogle Scholar
  3. Bergman L, Stoner BR, Turner KF, Glass JT, Nemanich RJ (1993) Microphotoluminescence and Raman scattering study of defect formation in diamond films. J Appl Phys 73:3951–3957CrossRefGoogle Scholar
  4. Bienemann-Kuespert E, Brennecke E, Flachbart I, Pietsch-Wilke G, Stiess P, Wagner J (1967) In: Kirschstein G, Koschel D, Kugler HK (eds) Gmelins Handbuch der Anorganischen Chemie. Verlag Chemie GmbH, p 237 (in German)Google Scholar
  5. Bokii GB, Bezrukov GN, Kluev JA, Naletov AM, Nepsha VI (1986) Natural and synthetic diamonds. Nauka, Moscow (in Russian)Google Scholar
  6. Bundy FP, Kasper JS (1967) Hexagonal diamond – A new form of carbon. J Chem Phys 46:3437–3446CrossRefGoogle Scholar
  7. Bundy FP, Strong HM, Wentorf RH (1973) Methods and mechanisms of synthetic diamond growth. Chem Phys Carbon 10:250–251Google Scholar
  8. Bradley JP (2003) The Astromineralogy of interplanetary dust particle. In: Henning Th. (ed) Astromineralogy. Springer-Verlag, Berlin Heidelberg, pp 217–235CrossRefGoogle Scholar
  9. Breeding CM, Wang W (2008) Occurrence of the Si–V defect center in natural colorless gem diamonds. (To be published in Diam Relat Mater)Google Scholar
  10. Brookes EJ, Greenwood P, Xing G (1999) The plastic deformation and strain-induced fracture of natural and synthetic diamond. Diam Relat Mater 8:1536–1539CrossRefGoogle Scholar
  11. Carlisle DB, Braman DR (1991) Nanometre-size diamonds in the Cretaceous/Tertiary boundary clay of Alberta. Nature 352:708–709CrossRefGoogle Scholar
  12. Bradley JP (2003) Collins AT (1992a) The characterisation of point defects in diamond by luminescence spectroscopy. Diam Relat Mater 1:457–469Google Scholar
  13. Bradley JP (2003) Collins AT (1992b) In: Purdes AJ (ed) Proc. 2nd Int. Symp. on Diamond Materials. Electrochem Soc Inc p. 408Google Scholar
  14. Chapman CR, Morrison D (1989) Cosmic Catastrophes, Plenum Press, New YorkGoogle Scholar
  15. Chen Q, Yun S (2000) Nano-sized diamond obtained from explosive detonation and its application. Mat Res Bull 35:1915–1919CrossRefGoogle Scholar
  16. Dai ZR, Bradley JP, Joswiak DJ, Brownlee DE, Genge MJ (2002a) Nanodiamonds in interplanetary dust particles (IDPs), micrometeorites and meteorites. Lun Planet Sci Conf XXXIII: abs. 1321Google Scholar
  17. Dai ZR, Bradley JP, Joswiak DJ, Brownlee DE, Hill HGM, Genge MJ (2002b) Possible in situ formation of meteoritic nanodiamonds in the early Solar System. Nature 418:157–159CrossRefGoogle Scholar
  18. Bradley JP (2003) Danilenko VV (2004) Shock-save sintering of nanodiamonds. Phys Solid State 46:711–715Google Scholar
  19. Daulton TL, Eisenhour DD, Bernatowicz TJ, Lewis RS, Buseck PR (1996) Genesis of presolar diamonds: comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nanodiamonds. Geochim Cosmochim Acta 60:4853–4872CrossRefGoogle Scholar
  20. Davies G (1977) The optical properties of diamond. In: Thrower PA, Walker Jr PL (eds) Chemistry and physics of carbon. vol 13, Marcel Dekker, New York, pp. 1–143Google Scholar
  21. Davies G (1994) Properties and growth of diamond. INSPEC, London, UKGoogle Scholar
  22. DeCarli PS (1998) More on the possibility of impact origin of carbonado. In: Schmidt SC, Dandekar DP, Forbes JW (eds) Shock compression of condensed matter – 1997. Am Inst Phys, Conference Proceedings 429:681–684Google Scholar
  23. DeCarli PS (1995) Shock wave synthesis of diamond and other phases. Mater Res Soc Symp Proc 383:21–31Google Scholar
  24. DeCarli PS, Jamieson JC (1961) Formation of Diamond by explosive shock. Science 133:1821–1822CrossRefGoogle Scholar
  25. DeCarli PS, El Goresy A, Xie Z, Sharp TG (2006) On the concordance of static high pressure phase transformation data on minerals with shock wave data. AGU Fall Meeting 2006, abstract #MR53D-08Google Scholar
  26. DeCarli PS, Bowden E, Jones AP, Price GD (2002) Laboratory impact experiments versus natural impact events. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geol Soc Am Special Paper 356, Boulder, Colorado, 595–605CrossRefGoogle Scholar
  27. De S, Heaney PJ, Vicenzi EP, Wang J (2001) Chemical heterogeneity in carbonado, an enigmatic polycrystalline diamond. Earth Planet Sci Lett 185:315–330CrossRefGoogle Scholar
  28. De S, Heaney PJ, Hargraves RB, Vicenzi EP, Taylor PT (1998) Microstructural observations of polycrystalline diamond: a contribution to the carbonado conundrum. Earth Planet Sci Lett 164:421–433CrossRefGoogle Scholar
  29. Denisenko AV, Zaitsev AM (1992) Cathodoluminescence studies of some natural yakutian diamonds. Belarussian State University, MinskGoogle Scholar
  30. Dollinger G, Bergmaier A, Frey CM, Roesler M, Verhoeven H (1995) Impurities of light elements in CVD diamond. Diam Relat Mater 4:591–595CrossRefGoogle Scholar
  31. Eggert J, Bradley D, Celliers P, Collins G, Hicks D, Braun D, Prisbrey S, Smith R, Boehly T (2007) Ramp compression of diamond to over 1000 GPa. American Physical Society, 15th APS Topical Conference on Shock Compression of Condensed Matter, June 24–29,2007, abstract #Q3.003Google Scholar
  32. El Goresy A, Gillet P, Chen M, Künstler F, Graup G, Stähle V (2001) In situ discovery of shock-induced graphite-diamond phase transition in gneisses from the Ries Crater, Germany. Am Min 86:611–621Google Scholar
  33. Erskine DJ, Nellis WJ (1992) Shock-induced martensitic transformation of highly oriented graphite to diamond. J Appl Phys 71:4882–4886CrossRefGoogle Scholar
  34. Erskine DJ, Nellis WJ (1991) Shock-induced Martensitic phase transformation of oriented graphite to diamond. Nature 349:317–319CrossRefGoogle Scholar
  35. Evans T, James PE (1964) Graphitization of diamond at zero pressure and at a high pressure. Proc R Soc Lond Set A 277:260–269CrossRefGoogle Scholar
  36. Ezersky VA (1986) The high-pressure polymorphs originated by shock transformation of coal. Zapiski Vsesoyuznogo Mineralogicheskogo Obstchestva 115:26–33 (in Russian)Google Scholar
  37. Ezersky VA (1986) Ezersky VA (1982) The shock-metamorphosed carbon matter in impactites. Meteoritika 41:134–140 (in Russian)Google Scholar
  38. Field JE (1992) The properties of natural and synthetic diamond. Academic Press, LondonGoogle Scholar
  39. Firsov LV (1965) On the meteoritic origin of the Puchezh-Katunsky crater. Geotectonika 2:106–118 (in Russian)Google Scholar
  40. Foote AE (1891) A new locality for meteoric iron with a preliminary notice of the discovery of diamonds in the iron. Am J Sci 42:413–417Google Scholar
  41. French BM (1998) Traces of Catastrophe. Lunar and Planetary Institute, Houston, TxGoogle Scholar
  42. Gehrels T (1994) Hazards due to comets and asteroids. Univ. Arizon Press, Tucson, AzGoogle Scholar
  43. Gilmour I, Russell SS, Arden JW, Lee MR, Franchi IA, Pillinger CT (1992) Terrestrial carbon and nitrogen isotopic ratios from cretaceous-tertiary boundary nanodiamonds. Science 258:1624–1626CrossRefGoogle Scholar
  44. Gurov EP, Gurova EP, Rakitskaya RB (1996) Impact diamonds of the Zapadnaja crater: phase composition and some properties. Met Planet Sci 31:A56Google Scholar
  45. Gurov EP, Gurova EP, Rakitskaya RB (1995) Impact diamonds in the craters of the Ukrainian shield. Meteoritics 31:515–516Google Scholar
  46. Graham RJ, Buseck PR (1994) Cathodoluminescence of brown diamonds as observed by transmission electron microscopy. Philos Mag B 70:1177–1185CrossRefGoogle Scholar
  47. Hanley PL, Kiflawi I, Lang AR (1977) On topographically identifiable sources of cathodoluminescence in natural diamond. Philos Trans R Soc London A 284:329–368CrossRefGoogle Scholar
  48. Hanneman RE, Strong HM, Bundy FP (1967) Hexagonal diamonds in meteorites: Implications. Science 155:995–997CrossRefGoogle Scholar
  49. He H, Sekine T, Kobayashi T (2002) Direct transformation of cubic diamond to hexagonal diamond. App Phys Lett 81:610–612.CrossRefGoogle Scholar
  50. Hough RM, Vishnevsky S, Abbott JI, Pal’Chik N, Raitala J, Gilmour I (1999) New data on the nature of impact diamonds from the Lappajärvi impact structure, Finland. Lun Planet Sc Conf XXX: abs. 1571Google Scholar
  51. Hough RM, Gilmour I, Pillinger CT (1998) Impact nanodiamonds in Cretaceous-Tertiary boundary fireball and ejecta layers: comparison with shock-produced diamonds and a search for lonsdaleite. Met Planet Sci 33:abs. A70Google Scholar
  52. Hough RM, Gilmour I, Pillinger CT, Langenhorst F, Montanari A (1997) Diamonds from the iridium-rich K-T boundary layer at Arroyo el Mimbral, Tamaulipas, Mexico. Geology 25:1019–1022CrossRefGoogle Scholar
  53. Hough RM, Gilmour I, Pillinger CT, Arden JW, Gilkes KWR, Yuan J, Millegde HJ (1995) Diamond and Silicon Carbide in Impact Melt Rock from the Ries Impact Crater. Nature 378:41–44CrossRefGoogle Scholar
  54. Huss G, Lewis RS (1995) Presolar diamond, SiC, and graphite in primitive chondrites: abundances as a function of meteorite class and petrologic type. Geochim Cosmochim Acta 59:115–160CrossRefGoogle Scholar
  55. Hoppe P, Zinner E (2000) Presolar dust grains from meteorites and their stellar sources. J Geophys Res 510:10371–10385CrossRefGoogle Scholar
  56. Jorge MIB, Pereira ME, Thomaz MF, Davies G, Collins AT (1983) Decay times of luminescence from brown diamonds. Portugal Phys 14:195–210Google Scholar
  57. Kagi H, Sato S, Akagi T, Kanda H (2007) Generation history of carbonado inferred from photoluminescence spectra, cathodoluminescence imaging, and carbon-isotopic composition. Am Min 92:217–224CrossRefGoogle Scholar
  58. Kagi H, Takahashi K, Hidaka H, Masuda A (1994) Chemical properties of Central African carbonado and its genetic implication. Geochim Cosmochim Acta 58:2629–2638CrossRefGoogle Scholar
  59. Kanda H, Jia X (2000) Change of luminescence character of Ib diamonds with HPHT treatment. Diam Relat Mater 10:1665–1669CrossRefGoogle Scholar
  60. Kanda H, Ahmadjan A, Kitawaki H (2005) Change in cathodoluminescence spectra and images of type II high-pressure synthetic diamond produced with high pressure and temperature treatment. Diam Relat Mater 14:1928–1931CrossRefGoogle Scholar
  61. Koeberl C (2006) Impact processes on the early earth. Elements 2:211–216CrossRefGoogle Scholar
  62. Koeberl C, Masaitis VL, Langenhorst F, Stoffler D, Schrauder M, Lengauer C, Gilmour I, Hough RM (1995) Diamonds from the Popigai impact structure, Russia. Lun Planet Sc Conf XXVI: 777–778Google Scholar
  63. Kurdumov AV, Malogolovets VG, Novikov NV, Piljankevich AH, Shulman LA (1994) Polymorphous modification of carbon and boron nitride. Metallurgija, Moscow (in Russian)Google Scholar
  64. Kvasnitsa VN, Sobotovich EV, Kovalukh NN, Litvak AL, Rybalko SI, Sharkin OP, Egorova LN (1979) High-pressure carbon polymorphs in mosses from the Tunguska impact site. Doklady Ukrainskoi Akademii Nauk B 12:1000–1004 (in Russian)Google Scholar
  65. Lang AR (1979) Internal structure. In: Field JE (ed) The properties of diamond. Academic Press, London, pp 425–469Google Scholar
  66. Lang AR (1977) Defects in natural diamonds: recent observations by new methods. J Crystal Growth 42:625–631CrossRefGoogle Scholar
  67. Langenhorst F (2003) Nanostructures in ultrahigh-pressure metamorphic coesite and diamond: a genetic fingerprint. Mitt Österr Miner Ges 148:401–412Google Scholar
  68. Langenhorst F, Masaitis VL (1996) Microstructural characteristics of impact diamonds from the Popigai crater, Russia. Met Planet Sci 31:A77Google Scholar
  69. Langenhorst F, Boustie M, Deutsch A, Hornemann U, Matignon Ch, Migault A, Romain JP (2003) Experimental techniques for the simulation of shock metamorphism: A case study on calcite. In: Davison L, Horie Y, Sekine T (eds) High-pressure shock compression of solids V. Springer-Verlag, New York, pp 1–27.Google Scholar
  70. Langenhorst F, Shafranovsky G, Masaitis VL, Koivisto M (1999) Discovery of impact diamonds in a Fennoscandian crater and evidence for their genesis by solid-state transformation. Geology 27:747–750CrossRefGoogle Scholar
  71. Langenhorst F, Shafranovsky G, Masaitis VL (1998) A comparative study of impact diamonds from the Popigai, Ries, Sudbury and Lappajärvi craters. Met Planet Sci 33:abs. A90Google Scholar
  72. Lipatov EI, Lisitsyn VM, Oleshko VI, Tarasenko VF (2007) Spectral and kinetic characteristics of the pulsed cathodoluminescence of a natural IIa-type diamond. Russ Phys J 50:52–57CrossRefGoogle Scholar
  73. Lipschutz ME, Anders E. (1961) The record in the meteorites–IV: Origin of diamonds in iron meteorites. Geochim Cosmochim Acta 24:83–88CrossRefGoogle Scholar
  74. Lo Giudice A, Pratesi G, Vishnevsky SA (2001) New SEM-CL data on the Popigai, Ries and Lappajärvi impact diamonds. Met Planet Sci 36:abs A115.Google Scholar
  75. Magee CW, Taylor WR (1999) Constraints from luminescence on the history and origin of carbonado. In: Gurney JJ, Pascoe MD (eds) Seventh International Kimberlite Conference, vol 2, Cape Town, pp. 529–532Google Scholar
  76. Martineau PM, Lawson SC, Taylor AJ, Quinn SJ, Evans DJF, Crowder MJ (2004) Identification of synthetic diamond grown using chemical vapor deposition (CVD). Gems & Gemology 40:2–25Google Scholar
  77. Masaitis VL (1996) Impact diamonds from astroblemes. In: Mineralogical Society of America 1996 Spring Meeting, May 20–24, Baltimore, Maryland. Abstract supplement to Eos Transactions. Washington: AGU Press, S142–S143Google Scholar
  78. Masaitis VL (1995) The origin and distribution of diamond-bearing impactites. Meteoritics 30:541Google Scholar
  79. Masaitis VL, Shafranovsky GI, Grieve RAF, Langenhorst F, Peredery WV, Therriault AM, Balmasov EL, Fedorova IG (1999) Impact diamonds in the suevitic breccias of the black member of the onaping formation, Sudbury structure, Ontario, Canada. In: Dressler BO, Sharpton VL (eds) Large meteorite impacts and planetary evolution II: Boulder, Colorado, Geol Soc Am, Special Paper 33:317–321Google Scholar
  80. Masaitis VL, Shafranovsky GI, Fedorova IG, Koivisto M, Korhonen JV (1998) New data on the nature of impact diamonds from the Lappajärvi impact structure, Finland. Lun Planet Sci Conf XXIX: abs. 1171Google Scholar
  81. Masaitis VL, Shafranovsky GI, Grieve RAF, Langenhorst F, Peredery WV, Balmasov EL, Fedorova IG, Therriault AM (1997) Discovery of impact diamonds at the Sudbury structure. In: International Conference on Large Meteorite Impacts and Planetary Evolution. LPI contribution no. 922. Houston. Lunar and Planetary Institute Press: p 33Google Scholar
  82. Masaitis VL, Shafranovskii GI, Ezerskii VA, Reshetniak NB (1990) Impact diamonds in ureilites and impactites. Meteoritika 49:180–196 (in Russian)Google Scholar
  83. Masaitis VL, Futergendler SI, Gnevyshev MA (1972) The diamonds in the impactites of the Popigai meteoritic crater. Zapiski Vsesouznogo Mineralogicheskogo Obstchestva 101:108–113Google Scholar
  84. Melosh HJ (2007) The contact and compression stage of impact cratering. Bridging the gap II: effect of target properties on the impact cratering process, Proceedings of the conference held September 22–26, 2007 in Saint-Hubert, Canada. LPI Contribution No. 1360, p 71–72Google Scholar
  85. Melosh HJ (1989) Impact Cratering – A Geological Process. Oxford University Press, New York.Google Scholar
  86. Migault A (1998) Concepts of shock waves. In: Benest D, Froeschlé C (eds) Impact on Earth. Springer, Berlin, pp 79–112Google Scholar
  87. Milledge HJ, Woods PA, Beard AD, Shelkov D, Willis B (1998) Cathodoluminescence of polished carbonado. In: Seventh International Kimberlite Conference Extended Abstracts, Capetown, South Africa, pp. 589–590Google Scholar
  88. Mohammed K, Davies G, Collins AT (1982) Uniaxial stress splitting of photoluminescence transitions at optical centres in cubic crystals: theory and application to diamond. J Phys C 15:2779–2788CrossRefGoogle Scholar
  89. Nahum J, Halperin A (1962) Excitation spectra and temperature dependence of luminescence and photoconductivity of diamond. J Phys Chem Solids 23:345–358CrossRefGoogle Scholar
  90. Nassau K (1993) Synthesis of bulk diamond: History and present status. In: Davis RF (ed) Diamond Films and Coatings, Noyes Publ, Westwood, pp 58–59Google Scholar
  91. Nazare MH, Neves AJ (2001) Properties, growth and applications of diamond. INSPEC, The Institution of Electrical Engineering, London, UK.Google Scholar
  92. Nassau K (1993) Nininger HH (1956) Arizona’s meteorite crater: Its past, present and future, World Press Inc., Denver, Colorado, 232 p.Google Scholar
  93. Oleinik GS, Valter AA, Erjomenko GK (2003) The structure of high lonsdaleite diamond grains from the impactites of the Belilovka (Zapadnaja) astrobleme (Ukraine). Lun Planet Sci Conf XXXIV: abs. 1561.Google Scholar
  94. Panczer G, Gaft M, Marfunin A (2000) Systems of interacting luminescence centers in natural diamonds: Laser-induced time-resolved and cathodoluminescence spectroscopy. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in Geosciences, Springer-Verlag, Berlin, 514 p.Google Scholar
  95. Pereira E, Pereira L, Raue L (1992) Time resolved photoluminescence and cathodoluminescence of CVD diamond films. Diam Relat Mater 1:901–905.CrossRefGoogle Scholar
  96. Pratesi G, Lo Giudice A, Vishnevsky S, Manfredotti C, Cipriani C (2003) Cathodoluminescence investigations on the Popigai, Ries, and Lappajärvi impact diamonds. Am Min 88:1778–1787Google Scholar
  97. Ronning C, Hofsaess H (1999) Ion implantation and annealing of diamond studied by emission channeling and cathodoluminescence. Diam Relat Mater 8:1623–1630CrossRefGoogle Scholar
  98. Rost R, Dolgov YA, Vishnevsky SA (1978) Gas inclusions and high-pressure polymorphs of carbon in the impact glasses of the Ries crater. Doklady Dok AN SSSR 241:695–698Google Scholar
  99. Schmitt RT, Siebenschock M, Stöffler D (1999) Distribution of impact diamonds in the Ries crater, Germany. Met Planet Sci 34:abs. 5125.Google Scholar
  100. Siebenschock M, Schmitt RT, Stöffler D (1998) Impact diamonds in glass bombs from suevite of the Ries crater, Germany: new observations. Met Planet Sci 33:abs A145.Google Scholar
  101. Siebenschock M, Langenhorst F, Schmitt RT, Stöffler D (1999) Impact diamonds in the dike suevite of Unterwilfingen, Ries crater, Germany. Lun Planet Sci Conf XXX: abs. 1172.Google Scholar
  102. Shelkov DA, Verchovsky AB, Milledge HJ, Kaminsky FV, Pillinger CT (1998) Carbon, nitrogen, argon and helium study of impact diamond from Ebeliakh alluvial deposits and Popigai crater. Met Planet Sci 33:985–992CrossRefGoogle Scholar
  103. Skala R, Bouska VJ (1992) Characteristics of Impact Diamonds. Meteoritics 27:290.Google Scholar
  104. Sumida N, Lang AR (1981) Cathodoluminescence evidence of dislocation interactions in diamond. Philos Mag A43:1277–1287CrossRefGoogle Scholar
  105. Thonke K, Schliesing R, Teofilov N, Zacharias H, Sauer R, Zaitsev AM, Kanda H, Anthony TR (2000) Electron–hole drops in synthetic diamond. Diam Relat Mater 9:428–431CrossRefGoogle Scholar
  106. Xu K, Tan H (2003) Shock wave chemistry and Ultrafine diamond from explosives in China. In: Davison L, Horie Y, Sekine T (eds) High-pressure shock compression of solids V. Springer-Verlag, New York, pp 139–162Google Scholar
  107. Yamada K (2003) Shock-Induced Phase transitions in oriented pyrolytic graphite. In: Davison L, Horie Y, Sekine T (eds) High-pressure shock compression of solids V. Springer-Verlag, New York, pp 117–138Google Scholar
  108. Yang ZQ, Verbeeck J, Schryvers D, Tarcea N, Popp J, Rösler W (2008) TEM and Raman characterisation of diamond micro- and nanostructures in carbon spherules from upper soils. Diam Relat Mater 17:937–943CrossRefGoogle Scholar
  109. Yelisseyev AP (1977) Thermostimulated luminescence and delayed luminescence of natural diamonds. Ph D thesis, Sverdlovsk, Ural Pedag Institut (in Russian)Google Scholar
  110. Yerofeev MV, Lachinov PA (1888) About the Novo Urei meteorite. Zhurnal Russkogo Physiko-Khimicheskogo Obstchestva XX: 185–213 (in Russian).Google Scholar
  111. Yokota Y, Kotsuka H, Sogi T, Ma JS, Hiraki A, Kawarada H, Matsuda K, Hatada M (1992) Formation of optical centers in CVD diamond by electron and neutron irradiation. Diam Relat Mater 1:470–477CrossRefGoogle Scholar
  112. Valter AA, Dobraynskii Yu P (2002) The cooling history of layered glassy impactites (Tagamites): Influence upon preservation of impact diamonds. Lun Planet Sc Conf XXXIII: abs. 1116.Google Scholar
  113. Valter AA, Gurskij DS, Erjomenko GK (2000) Distribution of impact diamond in the Belilovka (Zapadnaja) astrobleme on the Ukrainian Shield. Lun Planet Sc Conf XXXI: abs. 1215.Google Scholar
  114. Valter AA, Er’omenko GK, Kvasnitsa VN, Polkanov YA (1992) The shock-metamorphic minerals of carbon. Naukova Dumka Press, Kiev, 172 p. (in Russian).Google Scholar
  115. van Wyk JA, Woods GS (1995) Electron spin resonance of excited states of the H3 and H4 centres in irradiated type Ia diamonds. J Phys Condens Matter 7:5901–5912CrossRefGoogle Scholar
  116. Vishnevsky SA, Palchik NA (2002) Carbon matter in impactites of the Yanis-Järvi astrobleme, Russia: high pressure shock transformations. Lun Planet Sc Conf XXXIII: abs. 1676.Google Scholar
  117. Vishnevsky SA, Palchik NA (1975) Graphite in the rocks of the Popigai structure: its destruction and transformation into other phases of the carbon system. Sov Geol Geoph 16:55–61Google Scholar
  118. Vishnevsky SA, Afanas’ev VP, Argunov KP, Pal’chik NA (1997) Impact diamonds: their features, origin and significance. Transactions of the UIGGM SO RAN, issue no. 385. Novosibirsk: Siberian Branch of Russian Academy of Sciences Press, 1997, 110 p. (in Russian & English).Google Scholar
  119. Walker J (1979) Optical absorption and luminescence in diamond. Rep Prog Phys 42:1605–1659CrossRefGoogle Scholar
  120. Wang WN, Fox NA, May PW, Knapper MP, Meaden G, Partridge PG, Ashfold MNR, Steeds JW, Hayward IP, Pitt GD (1996) Laser raman studies of polycrystalline and amorphic diamond films. Phys Stat Sol (a) 154:255–268CrossRefGoogle Scholar
  121. Zaitsev AM (2001) Optical properties of diamond: a data handbook. Springer-Verlag, Berlin, HeidelbergGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Giovanni Pratesi
    • 1
  1. 1.Dipartimento di Scienze della TerraUniversitá di Firenze, Via G. La Pira 4, 50121 Firenze Italy; Museo di Scienze Planetarie, Provincia di PratoVia Galcianese 20/HItaly

Personalised recommendations