Petrological Modifications in Continental Target Rocks from Terrestrial Impact Structures: Evidence from Cathodoluminescence

  • Thomas Götte


Impact Crater Impact Structure Quartz Particle Blue Luminescence Shock Metamorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AlDahan AA, Ramseyer K, Morad S, Collini B (1988) Low temperature alterations in granitic rocks from the Siljan Ring Structure, Central Sweden. In: Bodén, A. and Eriksson, K. G. (eds) Deep Drilling in Crystalline Bedrock, vol. I. Springer, Berlin, pp 209–216Google Scholar
  2. Boden A, Eriksson KG (1988) Deep drilling in crystalline bedrock, Vol. I. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  3. Boggs Jr. S, Krinsley DH, Goles GG, Seyedolali A, Dypvik H (2001) Identification of shocked quartz by scanning cathodoluminescence imaging. Meteorit Planet Sci 36:783–791Google Scholar
  4. Botis S, Nokhirn SM, Pan Y, Xu Y, Bonli Th (2005) Natural radiation-induced damage in quartz. I. Correlations between cathodoluminescence and paramagnetic defects. Can Mineral 43:1565–1580CrossRefGoogle Scholar
  5. Dressler BO, Reimold WU (2001): Terrestrial impact melt rocks and glasses. Earth-Sci Rev 56:205–284CrossRefGoogle Scholar
  6. Engelhardt W v (1995) Suevite breccia from the Ries crater, Germany: Origin, cooling history and devitrification of impact glasses. Meteoritics 30:279–293Google Scholar
  7. Engelhardt W v (1997) Suevite breccia of the Ries impact crater, Germany: Petrography, chemistry and shock metamorphism of crystalline rock clasts. Meteoritics and Planetary Science 32:545–554Google Scholar
  8. Engelhardt W v (2003) Struktur und frühe Morphologie des Rieskraters. Geologica Bavarica 108:159–200Google Scholar
  9. Engelhardt W v, Berthold Ch, Wenzel Th, Dehner Th (2005) Chemistry, small-scale inhomogeneity, and formation of moldavites as condensates from sands vaporized by the Ries impact. Geochim Cosmochim Acta 69:5611–5626CrossRefGoogle Scholar
  10. Glinka YD, Lin S-H, Chen Y-T (1999) The photoluminescence from hydrogen-related species in composites of SiO2 nanoparticles. Appl Phys Lett 75(6):778–780CrossRefGoogle Scholar
  11. Glinka YD, Lin S-H, Hwang LP, Chen YT (2000) Photoluminescence from mesoporous silica: Similarity of properties to porous silicon. Appl Phys Lett 77(24):3968–3970CrossRefGoogle Scholar
  12. Götte Th, Richter DK (2006) Cathodoluminescence characterization of quartz particles in mature arenite. Sedimentology 53:1347–1359CrossRefGoogle Scholar
  13. Götze J (2000) Cathodoluminescence microscopy and spectroscopy in applied mineralogy. Freiberger Forschungshefte C 485:128Google Scholar
  14. Götze J, Plötze M, Götte Th, Neuser RD, Richter DK (2002) Cathodoluminescence (CL) of clay minerals. Mineral Petrol 176:195–212Google Scholar
  15. Grieve RAF (1988) The formation of large impact structures and constraints on the nature of Siljan. In: Bodén, A, Eriksson, KG (eds) Deep Drilling in Crystalline Bedrock, vol. I. Springer, Berlin, pp 328–348Google Scholar
  16. Gucsik A, Koeberl Ch, Brandstätter F, Libowitzky, E, Reimold, WU (2003) Scanning electron microscopy, cathodoluminescence, and Raman spectroscopy of experimentally shock-metamorphosed quartzite. Meteorit Planet Sci 38:1187–1197Google Scholar
  17. Gucsik A, Koeberl C, Brandstätter F, Libowitzky E, Ming, Z. (2004) Infrared, Raman, and cathodoluminescence studies of impact glasses. Meteorit Planet Sci 39:1273–1285Google Scholar
  18. Komor SC, Valley JW (1990) Deep drilling at the Siljan Ring impact structure: oxygen isotope geochemistry of granite. Contrib Mineral Petrol 105:516–532CrossRefGoogle Scholar
  19. Leichmann J, Broska I, Zacholeva K (2003) Low-grade metamorphic alteration of feldspar minerals: a CL-study. Terra Nova 15:104–108CrossRefGoogle Scholar
  20. Müller A, Seltmann R, Behr H-J (2000) Application of cathodoluminescence to magmatic quartz in a tin granite – case study from the Schellerhau Granite Complex, Eastern Erzgebirge, Germany. Mineralium Deposita 35:169–189CrossRefGoogle Scholar
  21. Müller A, Breiter K, Seltmann R, Pecskay Z (2005): Quartz and feldspar zoning in the eastern Erzgebirge volcano-plutonic complex (Germany, Czech Republic): evidence of multiple magma mixing. Lithos 80:201–227CrossRefGoogle Scholar
  22. Osinski GR, Spray JG, Lee P (2001) Impact-induced hydrothermal activity within the Haughton impact structure, arctic Canada: Generation of a transient, warm, wet oasis. Meteorit Planet Sci 3:731–745CrossRefGoogle Scholar
  23. Perny B, Eberhardt E, Ramseyer K, Mullis J, Pankrath R (1992) Microdistribution of Al, Li and Na in a-quartz: possible causes and correlation with short lived cathodoluminescence. Am Mineral 77: 534–544Google Scholar
  24. Ramseyer K, Mullis J (2000) Geologic application of cathodoluminescence of silicates. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 177–191Google Scholar
  25. Ramseyer K, AlDahan AA, Collini B, Landström O (1992) Petrological modifications in granitic rocks from the Siljan impact structure: evidence from cathodoluminescence. Tectonophysics 216:195–204CrossRefGoogle Scholar
  26. Richter DK, Götte Th, Habermann D (2002) Cathodoluminescence of authigenic albite. Sediment Geol 150:367–374CrossRefGoogle Scholar
  27. Richter DK, Götte Th, Götze J, Neuser RD (2003) Progress and application of cathodoluminescence (CL) in sedimentary petrology. Mineral Petrol 79:127–166.CrossRefGoogle Scholar
  28. Robertson PB, Grieve, RAF (1977) Shock attenuation at terrestrial impact structures. In: Roddy DJ, Pepein RO, Merill RB (eds) Impact and explosion cratering. Pergamon Press, New York, pp 687–702Google Scholar
  29. Rodot J (1971) Impactite of the charlevoix structure, Quebec, Canada. J Geophys Res 76:5414–5423CrossRefGoogle Scholar
  30. Roy DW (1979) Origin and evolution of the charlevoix cryptoexplosion strucutre. Ph.D. thesis, Princeton University, Princeton, New JerseyGoogle Scholar
  31. Schertl H-P, Neuser, RD, Sobolev NV, Shatsky VS (2004) UHP-metmorphic rocks from Dora Maira/Western Alps and Kokchetav/Kazakhstan: New Insight using cathodoluminescence petrography. Eur J Mineral 16:49–57CrossRefGoogle Scholar
  32. Shoemaker EM, Wynn JC (1997) Geology of the Wabar meteorite craters, Saudi Arabia. Proceedings of the XXVIII lunar and planetary science conference, Houston, Texas vol 3: pp 1313–1314Google Scholar
  33. Stevens Kalceff MAS, Phillips MR (1995) Cathodoluminescence microcharacterization of the defect structure of quartz. Phys Rev B 52(5):3122–3134CrossRefGoogle Scholar
  34. Sippel RF (1965) Simple device for luminescence petrography. Rev Scient Intr 36:556–558CrossRefGoogle Scholar
  35. Sippel RF (1968) Sandstone petrology, evidence from luminescence petrography. J Sediment Petrol 38:530–554Google Scholar
  36. Stöffler D, Langenhorst F (1994) Shock metamorphism of quartz in nature and experiment I. Basic observation and theory. Meteoritics 29:155–181Google Scholar
  37. Stöffler D (1972) Deformation and transformation of rock-forming minerals by natural and experimental shock processes II. Behaviour of minerals under shock compression. Fortschritte der Mineralogie 49:50–113Google Scholar
  38. Trepmann CA, Götte Th, Spray JG (2005) Impact-related Ca-metasomatism in crystalline traget-rocks from the Charlevoix structure, Quebec, Canada. Can Mineral 43:553–567CrossRefGoogle Scholar
  39. Turtle EP, Pierazzo E, O’Brien, DP (2003) Numerical modeling of impact heating and cooling of the Vredefort impact structure. Meteorit Planet Sci 38:293–303CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Thomas Götte
    • 1
  1. 1.Institute for Geological SciencesUniversity of BernBaltzerstrasse 1+3Switzerland

Personalised recommendations