Advertisement

Shock Metamorphism of Terrestrial Impact Structures and its Application in the Earth and Planetary Sciences

  • Arnold Gucsik

Keywords

Impact Crater Impact Structure Hugoniot Elastic Limit Shock Metamorphism Target Rock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum JD, Chamberlain CP, Hingston MP, Koeberl C, Marin LE, Schuraytz BC, Sharpton VL (1993) Isotopic comparison of K-T boundary impact glass with melt rock from the Chicxulub and Manson impact structures. Nature 364:325-327CrossRefGoogle Scholar
  2. Boggs S, Krinsley DH, Goles GG, Seyedolali A, Dypvik H (2001) Identification of shocked quartz by scanning cathodoluminescence imaging, Meteorit Planet Sci 36: 783-793Google Scholar
  3. Bunch TE (1968) Some characteristics of selected minerals from craters. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Book Corporation, Baltimore, 413-432 pp.Google Scholar
  4. Chao ECT, Shoemaker EM, Madsen BM (1960) First natural occurrence of coesite. Science 132: 220-222CrossRefGoogle Scholar
  5. Dence MR (1972) The nature and significance of terrestrial impact structures. 24th International Geological Congress, Montreal, Canada. Proceedings Section 15: 77-89Google Scholar
  6. Deutsch A (1998) Examples for terrestrial impact structures. In: Marfunin, S.A. (ed), Mineral matter in space, mantle, ocean floor, biosphere, environmental management, and jewelry. Adv Min vol. 3, Springer-Verlag, Berlin, Heidelberg, pp 119-129Google Scholar
  7. Dietz RS (1968) Shatter cones in cryptoexplosion structures. In: French MB, Short NM (Eds.) Shock metamorphism of natural materials. Mono Book Corporation, Baltimore 267-285 pp.Google Scholar
  8. Emmons RC (1943) The Universal Stage (With Five Axes of Rotation). Geol Soc Am Memoir 8:205 pp.Google Scholar
  9. French BM (1998) Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. LPI Contribution No. 954, Lunar and Planetary Institute, Houston, 120 pp.Google Scholar
  10. French BM, Short NM, (Eds) (1968) Shock metamorphism of natural materials. Mono Book Corporation, Baltimore, 644 pp.Google Scholar
  11. Gault DE, Quaide WL, Oberbeck VR (1968) Impact cratering mechanics and structures. In: French BM, Short NM (Eds.), Shock metamorphism of natural materials. Mono Book Corporation, Baltimore, pp. 87-99.Google Scholar
  12. Gash PFJ (1971) Dynamic mechanism for the formation of shatter cones. Nature 230:32-35Google Scholar
  13. Glass BP, Barlow RA (1979) Mineral inclusions in Muong Nong-type indochinites: Implications concerning parent material and process of formation. Meteoritics 14:55-67Google Scholar
  14. Goltrant O, Cordier P, Doukhan JC (1991) Planar deformation features in shocked quartz: a transmission electron microscopy investigation. Earth Planet Sci Lett 106:103-115CrossRefGoogle Scholar
  15. Goltrant O, Leroux H, Doukhan J-C, Cordier P. (1992) Formation mechanism of planar deformation features in naturally shocked quartz. Phys Earth Planet Inter 74:219-240CrossRefGoogle Scholar
  16. Gucsik A, Koeberl Ch, Brandstötter F, Libowitzky E, Ming, Z. (2004a) Infrared, Raman, and cathodoluminescence studies of impact glasses. Meteoritics and Planetary Science 39: 1273-1285CrossRefGoogle Scholar
  17. Gucsik A, Koeberl C, Brandstötter F, Libowitzky E Reimold WU (2004b) Cathodoluminescence, electron microscopy, and Raman spectroscopy of experimentally shock metamorphosed zircon crystals and naturally shocked zircon from the Ries impact crater. In: Dypvik H, Burchell M, Claeys Ph, (eds.) Cratering in Marine Environments and on Ice, Springer-Verlag, Heidelberg, pp 281-322.Google Scholar
  18. Gucsik A, Koeberl Ch, Brandstötter F, Libowitzky, E, Reimold, WU (2003) Scanning electron microscopy, cathodoluminescence, and Raman spectroscopy of experimentally shock-metamorphosed quartzite. Meteorit Planet Sci 38:1187-1197CrossRefGoogle Scholar
  19. Grieve RAF (1987) Terrestrial impact structures. Annu Rev Earth Planet Sci 15:245-270CrossRefGoogle Scholar
  20. Grieve RAF (1991) Terrestrial impact: The record in the rocks. Meteoritics 26: 175-194Google Scholar
  21. Grieve RAF, Langenhorst F, Stöffler D. (1996) Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience. Meteorit Planet Sci 31:6-35Google Scholar
  22. Hörz F (1982) Ejecta of the Ries crater, Germany. In: Silver LT, Schultz PH (eds.), Geological implications of impacts of large asteroids and comets on the Earth. Geol Soc Am Spec Paper 190: 39-55Google Scholar
  23. Hörz F, Quaide WL (1973) Debye-Scherrer investigations of experimentally shocked silicates. Moon 6: 45-82CrossRefGoogle Scholar
  24. Kaus A, Bischoff A, (2000) Cathodoluminescence (CL) properties of shocked plagioclase, Meteorit Planet Sci 35:A 86Google Scholar
  25. Kieffer SW, Simonds CH (1980) The role of volatiles and lithology in the impact cratering process. Rev Geophys Space Phys 18:143-181CrossRefGoogle Scholar
  26. Koeberl C (1992) Water content of glasses from the K/T boundary, Haiti: indicative of impact origin. Geochim Cosmochim Acta 56:4329-4332CrossRefGoogle Scholar
  27. Koeberl C (1997) Impact cratering: the mineralogical and geochemical evidence. In: Johnson KS, Campbell JA (eds) Ames structure in northwest Oklahoma and similar features: origin and petroleum production (1995 symposium). Okl Geol Surv Circ 100: 30-54Google Scholar
  28. Koeberl C, Bottomley R, Glass BP, Storzer D (1997a) Geochemistry and age of Ivory Coast tektites and microtektites. Geochim Cosmochim Acta 61: 1745-1772CrossRefGoogle Scholar
  29. Koeberl C, Masaitis VL, Shafranovsky GI, Gilmour I, Langenhorst F, Schrauder M (1997b) Diamonds from the Popigai impact structure, Russia. Geology 25:967-970CrossRefGoogle Scholar
  30. Leroux H, Reimold WU, Doukhan J-C (1994) A T.E.M. investigation of shock metamorphism in quartz from the Vredefort dome, South Africa. Tectonophysics 230:223-239CrossRefGoogle Scholar
  31. Littler J Fahey JJ Dietz RS Chao ECT (1961) Coesite from the Lake Bosumtwi crater, Ashanti, Ghana. Geol Soc Am Spec Paper 68:218Google Scholar
  32. Martinez I, Agrinier P (1998) Meteorite impact craters on Earth: major shock induced effects in rocks and minerals. Earth Planet Sci 327:75-86Google Scholar
  33. Martinez I, Deutsch A, Schörer U, Ildefonse P, Guyot F, Agrinier P. (1995) Shock recovery experiments on dolomite and thermodynamical calculations of impact induced decarbonation. J Geophys Res 100:15,465-15,476Google Scholar
  34. Medenbach O (1985) A new microrefractometer spindle stage and its application. Fortsch Mineral 63: 111-133Google Scholar
  35. Meisel T, Kröhenbühl U, Nazarov MA (1995) Combined osmium and strontium isotopic study of the Cretaceous-Tertiary boundary at Sumbar, Turkmenistan: A test for an impact vs. volcanic hypothesis. Geology 23:313-316CrossRefGoogle Scholar
  36. Melosh HJ (1989) Impact Cratering: A geologic process. Oxford University Press, New York, 245 pp.Google Scholar
  37. Melosh HJ (1992) Impact crater geology. In: Nierenberg WA (Ed.), Encyclopedia of earth system science 2. Academic Press, San Diego, pp 591-605.Google Scholar
  38. Montanari A, Koeberl C (2000) Impact stratigraphy: The italian record. Lecture Notes in Earth Sciences 93, Springer, Heidelberg, 364 pp.Google Scholar
  39. Owen MR, Anders HM (1988) Evidence from cathodoluminescence from non-volcanic origin of shocked quartz at the Cretaceous/Tertiary boundary, Nature 334:145-147CrossRefGoogle Scholar
  40. Ramseyer K, AlDahan AA, Collini B, Lindström O (1992) Petrological modifications in granitic rocks from the Siljan impact structure: evidence from cathodoluminescence. Tectonophysics 216:195-204Google Scholar
  41. Reimold WU (1995) Pseudotachylite in impact structures - generation by friction melting and shock brecciation?: A review and discussion. Earth Sci Rev 39: 247-265CrossRefGoogle Scholar
  42. Robertson PB, Dence MR, Vos MA (1968) Deformation in rock-forming minerals from Canadian craters. In: French BM, Short NM, (Eds.) Shock metamorphism of natural materials. Mono Book Corporation, Baltimore, pp. 433-452.Google Scholar
  43. Seyedolali A, Krinsley DH, Boggs S, O’Hara PF, Dypvik H, Goles G (1997) Provenance interpretation of quartz by scanning electron microscope-cathodoluminescence fabric analysis, Geology 25:787-790CrossRefGoogle Scholar
  44. Shagy A, Reches Z, Fineberg J, (2002) Dynamic fracture by large extraterrestrial impacts as the origin of shatter cones. Nature 418: 310-313CrossRefGoogle Scholar
  45. Sharpton VL, Grieve RAF (1990) Meteorite impact, cryptoexplosion, and shock metamorphism; A perspective on the evidence at the K/T boundary. Geol Soc Am Spec Paper 247: 301-318Google Scholar
  46. Shoemaker EM, Chao ECT (1961) New evidence for the impact origin of the Ries Basin, Bavaria, Germany. J Geophys Res 66: 3371-3378CrossRefGoogle Scholar
  47. Sippel RF, Spencer AB (1970) Luminescence petrography and properties of lunar crystalline rocks and breccias, Proc. Apollo 11 Lunar Sci.Conf. 3:2413-2426Google Scholar
  48. Kalceff MAS, Phillips MR, Moon AR, Kalceff W (2000) Cathodoluminescence microcharacterisation of silicon dioxide polymorphs: In: Pagel M, Barbin V, Blanc Ph, Ohnenstetter D (eds) Cathodoluminescence in Geosciences. Springer, Heidelberg, p. 193-224Google Scholar
  49. Stöffler D (1972) Deformation and transformation of rock-forming minerals by natural and experimental shock processes: I. Behaviour of minerals under shock compression. Fortsch Mineral 49: 50-113Google Scholar
  50. Stöffler D (1974) Deformation and transformation of rock-forming minerals by natural and experimental processes: II. Physical properties of shocked minerals. Fortsch Mineral 51: 256-289Google Scholar
  51. Stöffler D, Grieve RAF (1994) Classification and nomenclature of impact metamorphic rocks. 25th Lunar and Planetary Science Conference 1347-1348Google Scholar
  52. Stöffler D, Langenhorst F (1994) Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics 29:155-181Google Scholar
  53. Stöffler D, Hornemann U (1972) Quartz and feldspar glasses produced by natural and experimental shock. Meteoritics 7:371-394Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Arnold Gucsik
    • 1
  1. 1.Max Planck Institut für Chemie, Abteilung Geochemie, Joh.-J.-Becherweg 27UniversitätcampusGermany

Personalised recommendations