Advertisement

Physical Principles of Cathodoluminescence (CL) and its Applications in Geosciences

  • Jens Götze
  • Ulf Kempe
Chapter

Keywords

Luminescence Centre Contrib Mineral Petrol Apatite Crystal Emissive Transition Luminescence Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanc P, Baumer A, Cesbron F, Ohnenstetter D, Panczer G, Remond G (2000) Systematic cathodoluminescence spectral analysis of synthetic doped minerals: anhydrite, apatite, calcite, fluorite, scheelite and zircon. In: Pagel, M, Barbin, V, Blanc, P, Ohnenstetter, D (eds) Cathodoluminescence in geosciences Springer Verlag, Berlin Heidelberg New York, pp. 127–160Google Scholar
  2. Brooks RJ, Finch AA, Hole DE, Townsend PD, Wu Z (2002) The red to near-infrared luminescence in alkali feldspar. Contrib Mineral Petrol 143:484–494Google Scholar
  3. Burns RG (1993) Mineralogical applications of crystal field theory. 2nd ed., Cambridge University Press, Cambridge, 551 pGoogle Scholar
  4. El Ali A, Barbin G, Cervelle B, Ramseyer K, Bouroulec J (1993) Mn2+-activated luminescence in dolomite, calcite and magnesite: quantitative determination of manganese and site distribution by EPR and CL spectroscopy. Chem Geol 104:189–202CrossRefGoogle Scholar
  5. Evans J, Hogg AJC, Hopkins MS, Howarth RJ (1994) Quantification of quartz cements using combined SEM, CL, and image analysis. J Sediment Res A 64:334–338Google Scholar
  6. Finch, AA, Klein J (1999) The causes and petrological significance of cathodoluminescence emissions from alkali feldspars. Contrib Mineral Petrol 135:234–243CrossRefGoogle Scholar
  7. Gaft M, Reisfeld R, Panczer G, Shoval S, Champagnon B, Boulon G (1997) Eu3+ luminescence in high-symmetry sites of natural apatite. J Lum 72–74:572–574CrossRefGoogle Scholar
  8. Gaft M, Panczer G, Reisfeld R, Shinno I, Champagnon B, Boulon G (2000a) Laser-induced Eu3+ luminescence in zircon ZrSiO4. J Lum 87–89:1032–1035CrossRefGoogle Scholar
  9. Gaft M, Boulon G, Panczer G, Guyot Y, Reisfeld R, Votyakov S, Bulka G (2000b) Unexpected luminescence of Cr5+ and Cr3+ ions in ZrSiO4 zircon crystals. J Lum 87–89:1118–1121CrossRefGoogle Scholar
  10. Gaft M, Panczer G, Reisfeld R, Uspensky E (2001) Laser-induced time-resolved luminescence as a tool for rare-earth element identification in minerals. Phys Chem Minerals 28:347–363CrossRefGoogle Scholar
  11. Gaft M, Seigel H, Panczer G, Reisfeld R (2002) Laser-induced time-resolved luminescence spectroscopy of Pb2+ in minerals. Eur J Mineral 14:1041–1048CrossRefGoogle Scholar
  12. Gaft M, Reisfeld R, Panczer G (2005) Luminescence spectroscopy of minerals and materials. Springer-Verlag Berlin, Heidelberg, 356 ppGoogle Scholar
  13. Gorobets BS, Rogojine AA (2002) Luminescent spectra of minerals. RPC VIMS, Moscow, 300pGoogle Scholar
  14. Götte T, Richter DK (2004) Quantitative high-resolution cathodoluminescence spectroscopy of smithsonite. Mineral Mag 68:199–207CrossRefGoogle Scholar
  15. Götze J, Magnus M (1997) Quantitative determination of mineral abundance in geological samples using combined cathodoluminescence microscopy and image analysis. Eur J Mineral 9:1207–1215Google Scholar
  16. Götze J, Zimmerle W (2000) Quartz and silica as guide to provenance in sediments and sedimentary rocks. Contributions to Sedimentary Petrology 21, Schweizerbart’sche Verlagsbuchhandlung, Nögele and Obermiller, Stuttgart, 91 pGoogle Scholar
  17. Götze J, Kempe U (2008) A comparison of optical microscope (OM) and scanning electron microscope (SEM) based cathodoluminescence (CL) imaging and spectroscopy applied to geosciences. Mineral Mag (submitted)Google Scholar
  18. Götze J, Habermann D, Neuser RD, Richter DK (1999a) High-resolution spectrometric analysis of REE-activated cathodoluminescence (CL) in feldspar minerals. Chem Geol 153:81–91CrossRefGoogle Scholar
  19. Götze J, Kempe U, Habermann D, Nasdala L, Neuser RD, Richter DK (1999b) High-resolution cathodoluminescence combined with SHRIMP ion probe measurements of detrital zircons. Mineral Mag 63:179–187CrossRefGoogle Scholar
  20. Götze J, Plötze M, Fuchs H, Habermann D (1999c) Defect structure and luminescence behaviour of agate - results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Mineral Mag 63:149–163CrossRefGoogle Scholar
  21. Götze J, Habermann D, Kempe U, Neuser RD, Richter DK (1999d) Cathodoluminescence microscopy and spectroscopy of plagioclases from lunar soil (Luna20, Luna 24). Am Mineral 84:1027–1032Google Scholar
  22. Götze J, Krbetschek MR, Habermann D, Wolf D (2000) High-resolution cathodoluminescence studies of feldspar minerals. In: Pagel, M, Barbin, V, Blanc, P, Ohnenstetter, D (eds) (2000) Cathodoluminescence in geosciences. Springer Verlag, Berlin Heidelberg New York, pp. 245–270Google Scholar
  23. Götze J, Plötze M, Habermann D (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz: a review. Mineral Petrol 71:225–250CrossRefGoogle Scholar
  24. Götze J, Plötze M, Götte T, Neuser RD, Richter DK (2002) Cathodoluminescence (CL) and Electron Paramagnetic Resonance (EPR) studies of clay minerals. Mineral Petrol 76:195–212CrossRefGoogle Scholar
  25. Habermann D, Neuser R, Richter DK (1998) Low limit of Mn2+-activated cathodoluminescence of calcite: state of the art. Sed Geol 116:13–24CrossRefGoogle Scholar
  26. Habermann D, Meijer J, Neuser RD, Richter DK, Rolfs C, Stephan A (1999) Micro-PIXE and quantitative cathodoluminescence spectroscopy: Combined high resolution trace element analyses in minerals. Nucl Instr Methods Phys Res B 150:470–477CrossRefGoogle Scholar
  27. Habermann D, Neuser RD, Richter DK (2000a) Quantitative high resolution spectral analysis of Mn2+ in sedimentary calcite. In: Pagel, M, Barbin, V, Blanc, P, Ohnenstetter, D (eds) Cathodoluminescence in geosciences. Springer Verlag, Berlin Heidelberg New York, pp. 5331–5358Google Scholar
  28. Habermann D, Götte T, Meijer J, Stephan A, Richter DK, Niklas JR (2000b) High resolution rare-earth elements analyses of natural apatite and its application in geo-sciences: Combined micro-PIXE, quantitative CL spectroscopy and electron spin resonance analyses. Nucl Instr Methods Phys Res B 161–163:846–851CrossRefGoogle Scholar
  29. Höger T, Dung PT (2003) Quantitative laser-induced photoluminescence and cathodoluminescence spectroscopy of natural and synthetic rubies. In: Hofmeister, W, Quang, VX, Dao, NQ, Nghi, T (eds) Geo- and material sciences on gem-minerals of Vietnam Proc 2nd Int workshop Hanoi, pp. 122–128Google Scholar
  30. Kempe U, Götze J (2002) Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Mineral Mag 66:135–156CrossRefGoogle Scholar
  31. Kempe U, Trinkler M, Wolf D (1991) Yttrium und die Seltenerdfotolumineszenz natürlicher Scheelite. Chem Erde 51:275–289Google Scholar
  32. Kempe U, Götze J, Dandar S, Habermann D (1999) Magmatic and metasomatic processes during formation of the Nb-Zr-REE deposits from Khaldzan Buregte (Mongolian Altai): Indications from a combined CL - SEM study. Mineral Mag 63:165–177CrossRefGoogle Scholar
  33. Kempe U, Gruner T, Nasdala L, Wolf D (2000) Relevance of cathodoluminescence for the interpretation of U-Pb zircon ages, with an example of an application to a study of zircons from the Saxonian Granulite Complex, Germany. In: Pagel, M, Barbin, V, Blanc, P, Ohnenstetter, D (eds) (2000) Cathodoluminescence in geosciences. Springer Verlag, Berlin, Heidelberg, New York, pp 425–456Google Scholar
  34. Kempe U, Plötze M, Brachmann A, Böttcher R (2002) Stabilisation of divalent rare earth elements in natural fluorite. Mineral Petrol 76:213–234CrossRefGoogle Scholar
  35. Krbetschek MR, Götze J, Dietrich A, Trautmann T (1998) Spectral information from minerals relevant for luminescence dating. Radiat Meas 27:695–748CrossRefGoogle Scholar
  36. Krbetschek MR, Götze J, Irmer G, Rieser U, Trautmann T (2002) The red luminescence emission of feldspar and its wavelength dependence on K, Na, Ca – composition Mineral Petrol 76:167–177Google Scholar
  37. Marfunin AS (1979) Spectroscopy, luminescence and radiation centres in minerals. Springer-Verlag, Berlin, 352pGoogle Scholar
  38. Marfunin AS (1995) Advanced Mineralogy Vol 2 – Methods and instrumentations: Results and recent developments. Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  39. Mariano AN, Ring PJ (1975) Europium-activated cathodoluminescence in minerals. Geochim Cosmochim Acta 39:649–660CrossRefGoogle Scholar
  40. Marshall DJ (1988) Cathodoluminescence of geological materials. Unwin-Hyman, Boston, 146 pGoogle Scholar
  41. Marshall DJ (2004) Macrophotography of cathodoluminescence of mineral specimens. 32nd International Geological Congress, Florece, Italy, Abstracts, 576Google Scholar
  42. Medlin WL (1968) The nature of traps and emission centers in thermoluminescent rock materials. In: McDougall, DJ (ed) Thermoluminescence of geological materials. Academic Press, New York, pp 193–223Google Scholar
  43. Meunier JD, Sellier E, Pagel M (1990) Radiation-damage rims in quartz from uranium-bearing sandstones. J Sed Petrol 60:53–58Google Scholar
  44. Mikhail P, Hulliger J, Ramseyer K (1999) Cathodoluminescence and photoluminescence of Smn+ (n=2,3) in oxide environments. Solid State Commun 112:483–488CrossRefGoogle Scholar
  45. Morozov M, Trinkler M, Plötze M, Kempe U (1996) Spectroscopic studies on fluorites from Li-F and alkaline granitic systems in Central Kazakhstan. In: Shatov V, et al (eds) Granite-related ore deposits of Central Kazakhstan and adjacent areas. GLAGOL Publ House, St Petersburg, pp 359–369Google Scholar
  46. Owen MR (1988) Radiation-damage halos in quartz. Geology 16:529–532CrossRefGoogle Scholar
  47. Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) (2000) Cathodoluminescence in geosciences. Springer Verlag, Berlin, Heidelberg, New York, 514 pGoogle Scholar
  48. Ramseyer K, Mullis J (1990) Factors influencing short-lived blue cathodoluminescence of alpha-quartz. Am Mineral 75:791–800Google Scholar
  49. Remond G, Phillips MR, Roques-Carmes C (2000) Importance of instrumental and experimental factors on the interpretation of cathodoluminescence data from wide band gap materials. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) (2000) Cathodoluminescence in geosciences. Springer Verlag, Berlin, Heidelberg, New York, pp 59–126Google Scholar
  50. Richter DK, Götte Th, Götze J, Neuser RD (2001) Progress in application of cathodoluminescence (CL) in sedimentary geology. Mineral Petrol 79:127–166Google Scholar
  51. Vortisch W, Harding D, Morgan J (2003) Petrographic analysis using cathodoluminescence microscopy with simultaneous energy-dispersive X-ray spectroscopy. Mineral Petrol 79:193–202CrossRefGoogle Scholar
  52. Yacobi C, Holt DB (1990) Cathodoluminescence microscopy of inorganic solids. Plenum, New York, 292 pGoogle Scholar
  53. Zinkernagel U (1978) Cathodoluminescence of quartz and its application to sandstone petrology. Contr Sed 8:69 pGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jens Götze
    • 1
  • Ulf Kempe
  1. 1.TU Bergakademie FreibergInstitute of MineralogyGermany

Personalised recommendations