Advertisement

Ant Colony Optimization for Genome-Wide Genetic Analysis

  • Casey S. Greene
  • Bill C. White
  • Jason H. Moore
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5217)

Abstract

In human genetics it is now feasible to measure large numbers of DNA sequence variations across the human genome. Given current knowledge about biological networks and disease processes it seems likely that disease risk can best be modeled by interactions between biological components, which can be examined as interacting DNA sequence variations. The machine learning challenge is to effectively explore interactions in these datasets to identify combinations of variations which are predictive of common human diseases. Ant colony optimization (ACO) is a promising approach to this problem. The goal of this study is to examine the usefulness of ACO for problems in this domain and to develop a prototype of an expert knowledge guided probabilistic search wrapper. We show that an ACO approach is not successful in the absence of expert knowledge but is successful when expert knowledge is supplied through the pheromone updating rule.

Keywords

Genetic Programming Expert Knowledge Multifactor Dimensionality Reduction Heuristic Information Common Human Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Freitas, A.A.: Understanding the crucial role of attribute interaction in data mining. Artif. Intell. Rev. 16(3), 177–199 (2001)zbMATHCrossRefGoogle Scholar
  2. 2.
    Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer Academic Publishers, Norwell (2002)zbMATHGoogle Scholar
  3. 3.
    Moore, J.H.: The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Human Heredity 56, 73–82 (2003)CrossRefGoogle Scholar
  4. 4.
    The International HapMap Consortium: A haplotype map of the human genome. Nature 437(7063), 1299–1320 (2005); 10.1038/nature04226Google Scholar
  5. 5.
    Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Technical report 91-016, Dipartimento di Elettronica e Informatica, Politecnico di Milano (1991)Google Scholar
  6. 6.
    Parpinelli, R., Lopes, H., Freitas, A.: An Ant Colony Based System for Data Mining: Applications to Medical Data. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 791–797 (2001)Google Scholar
  7. 7.
    Moore, J.H., White, B.C.: Genome-wide genetic analysis using genetic programming: The critical need for expert knowledge. Genetic Programming Theory and Practice IV (2007)Google Scholar
  8. 8.
    White, B.C., Gilbert, J.C., Reif, D.M., Moore, J.H.: A statistical comparison of grammatical evolution strategies in the domain of human genetics. In: Proceedings of the IEEE Congress on Evolutionary Computing, pp. 676–682 (2005)Google Scholar
  9. 9.
    Moore, J.H., White, B.C.: Exploiting expert knowledge in genetic programming for genome-wide genetic analysis. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 969–977. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Greene, C.S., White, B.C., Moore, J.H.: An expert knowledge-guided mutation operator for genome-wide genetic analysis using genetic programming. In: Rajapakse, J.C., Schmidt, B., Volkert, L.G. (eds.) PRIB 2007. LNCS (LNBI), vol. 4774, pp. 30–40. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Moore, J.H., White, B.C.: Tuning relieff for genome-wide genetic analysis. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol. 4447, pp. 166–175. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Moore, J.H.: Computational analysis of gene-gene interactions using multifactor dimensionality reduction. Expert Review of Molecular Diagnostics 4(6), 795–803 (2004)CrossRefGoogle Scholar
  13. 13.
    Moore, J.H.: Genome-wide analysis of epistasis using multifactor dimensionality reduction: feature selection and construction in the domain of human genetics. In: Knowledge Discovery and Data Mining: Challenges and Realities with Real World Data. IGI (2007)Google Scholar
  14. 14.
    Moore, J.H., Gilbert, J.C., Tsai, C.T., Chiang, F.T., Holden, T., Barney, N., White, B.C.: A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. Journal of Theoretical Biology 241(2), 252–261 (2006)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Parl, F.F., Moore, J.H.: Multifactor dimensionality reduction reveals high-order interactions among estrogen metabolism genes in sporadic breast cancer. American Journal of Human Genetics 69, 138–147 (2001)CrossRefGoogle Scholar
  16. 16.
    Wilke, R.A., Reif, D.M., Moore, J.H.: Combinatorial pharmacogenetics. Nature Reviews Drug Discovery 4, 911–918 (2005)CrossRefGoogle Scholar
  17. 17.
    Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Machine Learning: Proceedings of the AAA 1992 (1992)Google Scholar
  18. 18.
    Kononenko, I.: Estimating attributes: Analysis and extension of relief. In: Machine Learning: ECML-1994, vol. 94, pp. 171–182 (1994)Google Scholar
  19. 19.
    Robnik-Sikonja, M., Kononenko, I.: Theoretical and empirical analysis of relieff and relieff. Mach. Learn. 53, 23–69 (2003)zbMATHCrossRefGoogle Scholar
  20. 20.
    Sokal, R.R., Rohlf, F.J.: Biometry: the principles and practice of statistics in biological research, 3rd edn. W. H. Freeman and Co., New York (1995)Google Scholar
  21. 21.
    Bullnheimer, B., Hartl, R., Strauss, C.: A new rank-based version of the ant system: a computational study. Central European Journal for Operations Research and Economics 7(1), 25–38 (1999)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Stützle, T., Hoos, H.: MAX-MIN Ant System and local search for the traveling salesman problem. IEEE International Conference on Evolutionary Computation 1997, 309–314 (1997)Google Scholar
  23. 23.
    Stützle, T., Hoos, H.H.: MAX-MIN Ant System. Future Generation Computer Systems 16(8), 889–914 (2000)CrossRefGoogle Scholar
  24. 24.
    Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation 6(4), 333–346 (2002)CrossRefGoogle Scholar
  25. 25.
    Gonzalez, G., Uribe, J.C., Tari, L., Brophy, C., Baral, C.: Mining gene-disease relationships from biomedical literature: Weighting protein-protein interactions and connectivity measures. In: Pacific Symposium on Biocomputing, vol. 12, pp. 28–39 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Casey S. Greene
    • 1
  • Bill C. White
    • 1
  • Jason H. Moore
    • 1
  1. 1.Dartmouth CollegeLebanon, NHUSA

Personalised recommendations