Incorporating Preferences to a Multi-objective Ant Colony Algorithm for Time and Space Assembly Line Balancing

  • Manuel Chica
  • Óscar Cordón
  • Sergio Damas
  • Jordi Pereira
  • Joaquín Bautista
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5217)

Abstract

We present an extension of a multi-objective algorithm based on Ant Colony Optimisation to solve a more realistic variant of a classical industrial problem: Time and Space Assembly Line Balancing. We study the influence of incorporating some domain knowledge by guiding the search process of the algorithm with preferences-based dominance. Our approach is compared with other techniques, and every algorithm tackles a real-world instance from a Nissan plant. We prove that the embedded expert knowledge is even more justified in a real-world problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bautista, J., Pereira, J.: Ant algorithms for a time and space constrained assembly line balancing problem. European Journal of Operational Research 177, 2016–2032 (2007)MATHCrossRefGoogle Scholar
  2. 2.
    Scholl, A.: Balancing and Sequencing of Assembly Lines, 2nd edn. Physica-Verlag, Heidelberg (1999)Google Scholar
  3. 3.
    Chica, M., Cordón, O., Damas, S., Bautista, J., Pereira, J.: Multi-objective, constructive heuristics for the 1/3 variant of the time and space assembly line balancing problem: ACO and randomised greedy. Technical Report AFE-08-01, European Centre for Soft Computing, Asturias (Spain) (2008)Google Scholar
  4. 4.
    Barán, B., Schaerer, M.: A multiobjective ant colony system for vehicle routing problem with time windows. In: 21st IASTED Conf., Germany, pp. 97–102 (2003)Google Scholar
  5. 5.
    García Martínez, C., Cordón, O., Herrera, F.: A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. European Journal of Operational Research 180, 116–148 (2007)MATHCrossRefGoogle Scholar
  6. 6.
    Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems, 2nd edn. Springer, Heidelberg (2007)MATHGoogle Scholar
  7. 7.
    Scholl, A., Becker, C.: State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research 168, 666–693 (2006)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Blum, C., Bautista, J., Pereira, J.: Beam-ACO applied to assembly line balancing. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 96–107. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Dorigo, M., Gambardella, L.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Manuel Chica
    • 1
  • Óscar Cordón
    • 1
  • Sergio Damas
    • 1
  • Jordi Pereira
    • 2
  • Joaquín Bautista
    • 2
  1. 1.European Centre for Soft ComputingMieres (Asturias)Spain
  2. 2.Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations