Advertisement

A Fast Algorithm to Find Overlapping Communities in Networks

  • Steve Gregory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5211)

Abstract

Many networks possess a community structure, such that vertices form densely connected groups which are more sparsely linked to other groups. In some cases these groups overlap, with some vertices shared between two or more communities. Discovering communities in networks is a computationally challenging task, especially if they overlap. In previous work we proposed an algorithm, CONGA, that could detect overlapping communities using the new concept of split betweenness. Here we present an improved algorithm based on a local form of betweenness, which yields good results but is much faster. It is especially effective in discovering small-diameter communities in large networks, and has a time complexity of only O(n log n) for sparse networks.

Keywords

Short Path Time Complexity Fast Algorithm Random Network Sparse Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adamcsek, B., Palla, G., Farkas, I., Derényi, I., Vicsek, T.: CFinder: Locating Cliques and Overlapping Modules in Biological Networks. Bioinformatics 22, 1021–1023 (2006)CrossRefGoogle Scholar
  2. 2.
    Baumes, J., Goldberg, M., Magdon-Ismail, M.: Efficient Identification of Overlapping Communities. In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang, F.-Y., Chen, H., Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp. 27–36. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast Unfolding of Community Hierarchies in Large Networks. Eprint arXiv:0803.0476v1 at arxiv.org (2008)Google Scholar
  4. 4.
    Boguña, M., Pastor-Satorras, R., Diaz-Guilera, A., Arenas, A.: Phys. Phys. Rev. E 70, 056122 (2004)CrossRefGoogle Scholar
  5. 5.
    Clauset, A., Moore, C., Newman, M.E.J.: Structural Inference of Hierarchies in Networks. In: Statistical Network Analysis: Models, Issues, and New Directions, pp. 1–13 (2007)Google Scholar
  6. 6.
    Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing Community Structure Identification. J. Stat. Mech., P09008 (2005)Google Scholar
  7. 7.
    Fred, A.L.N., Jain, A.K.: Robust Data Clustering. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 128–133. IEEE Press, New York (2003)Google Scholar
  8. 8.
    Girvan, M., Newman, M.E.J.: Community Structure in Social and Biological Networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gregory, S.: An Algorithm to Find Overlapping Community Structure in Networks. In: Kok, J.N., Koronacki, J., López de Mántaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 91–102. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Gregory, S.: Local Betweenness for Finding Communities in Networks. Technical report, University of Bristol (2008)Google Scholar
  11. 11.
    Lancichinetti, A., Fortunato, S., Kertesz, J.: Detecting the Overlapping and Hierarchical Community Structure of Complex Networks. Eprint arXiv:0802.1218v1 at arxiv.org (2008)Google Scholar
  12. 12.
    Nelson, D.L., McEvoy, C.L., Schreiber, T.A.: The University of South Florida Word Association, Rhyme and Word Fragment Norms (1998), http://w3.usf.edu/FreeAssociation/
  13. 13.
    Newman, M.E.J.: The Structure of Scientific Collaboration Networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Newman, M.E.J.: Detecting Community Structure in Networks. Eur. Phys. J. B 38, 321–330 (2004)CrossRefGoogle Scholar
  15. 15.
    Newman, M.E.J.: Fast Algorithm for Detecting Community Structure in Networks. Phys. Rev. E 69, 066133 (2004)CrossRefGoogle Scholar
  16. 16.
    Newman, M.E.J.: Finding Community Structure in Networks Using the Eigenvectors of Matrices. Phys. Rev. E 74, 036104 (2006)CrossRefGoogle Scholar
  17. 17.
    Newman, M.E.J.: Modularity and Community Structure in Networks. Proc. Natl. Acad. Sci. USA 103, 8577–8582 (2006)CrossRefGoogle Scholar
  18. 18.
    Newman, M.E.J., Girvan, M.: Finding and Evaluating Community Structure in Networks. Phys. Rev. E 69, 026113 (2004)CrossRefGoogle Scholar
  19. 19.
    Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending Modularity Definition for Directed Graphs with Overlapping Communities. Eprint arXiv:0801.1647v3 at arxiv.org (2008)Google Scholar
  20. 20.
    Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the Overlapping Community Structure of Complex Networks in Nature and Society. Nature 435, 814–818 (2005)CrossRefGoogle Scholar
  21. 21.
    Pons, P., Latapy, M.: Computing Communities in Large Networks Using Random Walks. J. Graph Algorithms and Applications 10(2), 191–218 (2006)MathSciNetGoogle Scholar
  22. 22.
    Rand, W.M.: Objective Criteria for the Evaluation of Clustering Methods. J. Am. Stat. Assoc. 66, 846–850 (1971)CrossRefGoogle Scholar
  23. 23.
    Salvetti, F., Srinivasan, S.: Local Flow Betweenness Centrality for Clustering Community Graphs. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 531–544. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Wakita, K., Tsurumi, T.: Finding Community Structure in Mega-scale Social Networks. In: 16th International World Wide Web Conference, WWW 2007, pp. 1275–1276 (2007)Google Scholar
  25. 25.
    Wirz, M.: Personal communicationGoogle Scholar
  26. 26.
    Xie, N.: Social Network Analysis of Blogs. M.Sc Dissertation. University of Bristol (2006)Google Scholar
  27. 27.
    Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.: SCAN: a Structural Clustering Algorithm for Networks. In: 13th International Conference on Knowledge Discovery and Data Mining, KDD 2007, pp. 824–833. ACM, New York (2007)CrossRefGoogle Scholar
  28. 28.
    Zhang, S., Wang, R., Zhang, X.: Identification of Overlapping Community Structure in Complex Networks Using Fuzzy C-means Clustering. Physica A: Statistical Mechanics and its Applications 374(1), 483–490 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Steve Gregory
    • 1
  1. 1.Department of Computer ScienceUniversity of BristolEngland

Personalised recommendations