On the Quasi-cyclicity of the Gray Map Image of a Class of Codes over Galois Rings

  • Carlos Alberto López-Andrade
  • Horacio Tapia-Recillas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5228)


Results on the quasi-cyclicity of the Gray map image of a class of codes defined over the Galois ring GR(p 2,m) are given. These results generalize some appearing in [8] for codes over the ring Open image in new window of integers modulo p 2 (p a prime). The ring of (truncated) Witt vectors is a useful tool in proving the main results.


Quasi-cyclicity Galois rings Gray map Witt ring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Calderbank, A.R., Sloane, N.J.A.: Modular and p-adic Cyclic Codes. Des., Codes and Cryptogr. 6(1), 21–35 (1995)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Carlet, C.: \(Z_{2^k}\)-linear Codes. IEEE Trans. Inform. Theory 44, 1543–1547 (1998)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Dinh, H.Q., López-Permouth, S.R.: Cyclic and Negacyclic Codes Over Finite Chain Rings. IEEE Trans. Inform. Theory 50(8), 1728–1744 (2004)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Greferath, M., Schmidt, S.E., Gray, S.E.: isometries for Finite Chain rings and a Nonlinear Ternary (36, 312, 15) Code. IEEE Trans. Inform. Theory 45, 2522–2524 (1999)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Hammons Jr., A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The Z 4-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40, 301–319 (1994)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Heise, W., Honold, T., Nechaev, A.A.: Weighted modules and representations of codes. In: Proc. ACCT, Pskov, Russia, vol. 6, pp. 123–129 (1998)Google Scholar
  7. 7.
    Kanwar, K., Lopez-Permouth, S.R.: Cyclic Codes over the Integers Modulo p m. Finite Fields and Their Applications 3(4), 334–352 (1997)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Ling, S., Blackford, T.: Open image in new window-linear Codes. IEEE Trans. Inform. Theory 48(9), 2592–2605 (2002)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Ling, S., Özbudak, F.: An Improvement of the Bound of Exponential Sums Over Galois Rings With Some Applications. IEEE Trans. Inform. Theory 50(10), 2529–2539 (2004)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Ling, S., Solé, P.: Non-linear p-ary sequences. J. Applied Algebra in Engineering Communication and Computing (AAECC) 14, 117–125 (2003)CrossRefMATHGoogle Scholar
  11. 11.
    McDonald, B.R.: Finite rings with identity. Pure and Applied Mathematics 28 (1974)Google Scholar
  12. 12.
    Nechaev, A.A.: The Kerdock code in a cyclic form. Math. Appl. 1, 365–384 (1991); (English translation of Diskret. Mat., 1989)MathSciNetMATHGoogle Scholar
  13. 13.
    Nechaev, A.A., Kuzmin, A.S.: Kerdock codes in a cyclic form. Discr. Math. Appl. 1, 365–384 (1991)MATHCrossRefGoogle Scholar
  14. 14.
    Norton, G., Salagean-Mandache, A.: On the structure of linear cyclic codes over finite chain rings. Appl. Algebra Eng. Commun. Comput (AAECC) 10(6), 489–506 (2000)CrossRefMATHGoogle Scholar
  15. 15.
    Pless, V., Qian, Z.: Cyclic codes and quadratic residue codes over Open image in new window. IEEE Trans. Inform. Theory 42, 1594–1600 (1996)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Pless, V., Solé, P., Qian, Z.: Cyclic self-dual Open image in new window codes. Finite Fields and their Applications 3, 48–69 (1997)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Serre, J.P.: Corps locaux. Publications de L’Institute de Mathématique de L’Université de Nancago VIII, Herman, Paris (1962)Google Scholar
  18. 18.
    Tapia-Recillas, H., The Gray, H.: map on GR(p 2,n) and Repeated-Root Cyclic Codes. In: Mullen, G.L., Poli, A., Stichtenoth, H. (eds.) Fq7 2003. LNCS, vol. 2948, pp. 181–196. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Tapia-Recillas, H., Vega, G.: On the Open image in new window-Linear and Quaternary Codes. SIAM Journal on Discrete Mathematics 17(1), 103–113 (2003)CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    van Ash, B., van Tilborg, H.C.A.: Two “Dual” families of Nearly-Linear Codes over Open image in new window, p odd. J. Applied Algebra in Engineering Communication and Computing (AAECC) 11, 313–329 (2001)CrossRefGoogle Scholar
  21. 21.
    Wan, Z.X.: Lectures on Finite Fields and Galois Rings. World Scientific Publish. Co., Singapure (2003)MATHGoogle Scholar
  22. 22.
    Wolfmann, J., Binary, W.: images of cyclic codes over Open image in new window. IEEE, Trans. Inform. Theroy 47, 1773–1779 (2001)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Carlos Alberto López-Andrade
    • 1
    • 2
  • Horacio Tapia-Recillas
    • 2
  1. 1.Facultad de Ciencias de la ComputaciónBUAPPueblaMéxico
  2. 2.Dpto. MatemáticasUAM-ID.F.México

Personalised recommendations