Advertisement

A Decentralized Implementation of Mobile Ambients

  • Fabio Gadducci
  • Giacoma Valentina Monreale
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5214)

Abstract

We present a graphical implementation for finite processes of the mobile ambients calculus. Our encoding uses unstructured (i.e., non hierarchical) graphs and it is sound and complete with respect to the structural congruence of the calculus (that is, two processes are equivalent iff they are mapped into isomorphic graphs). With respect to alternative proposals for the graphical implementation of mobile ambients, our encoding distinguishes the syntactic structure of a process from the activation order of a process components. Our solution faithfully captures a basic feature of the calculus (ambients can be nested and reductions are propagated across ambient nesting) and it allows to model the reduction semantics via a graph transformation system containing just three rules.

Keywords

Direct Derivation Operational Semantic Graph Transformation Parallel Composition Type Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cardelli, L., Gordon, A.: Mobile ambients. Theor.Comp.Sci. 240(1), 177–213 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Regev, A., Panina, E., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients: an abstraction for biological compartments. Theor.Comp.Sci. 325(1), 141–167 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Information and Computation 186(2), 194–235 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hirschkoff, D., Pous, D., Sangiorgi, D.: An efficient abstract machine for safe ambients. Journal of Logic and Algebraic Programming 71(2), 114–149 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gadducci, F.: Graph rewriting for the π-calculus. Mathematical Structures in Computer Science 17(3), 407–437 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Milner, R.: Pure bigraphs: Structure and dynamics. Information and Computation 204(1), 60–122 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gadducci, F., Montanari, U.: A concurrent graph semantics for mobile ambients. In: Brookes, S., Mislove, M. (eds.) Mathematical Foundations of Programming Semantics. Electr.Notes in Theor.Comp.Sci., vol. 45. Elsevier Science, Amsterdam (2001)Google Scholar
  8. 8.
    Ferrari, G., Montanari, U., Tuosto, E.: A LTS semantics of ambients via graph synchronization with mobility. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 1–16. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Cenciarelli, P., Talamo, I., Tiberi, A.: Ambient graph rewriting. In: Martì-Oliet, N. (ed.) Rewriting Logic and its Applications. ENTCS, vol. 117, pp. 335–351. Elsevier, Amsterdam (2005)Google Scholar
  10. 10.
    Mylonakis, N., Orejas, F.: Another fully abstract graph semantics for the ambient calculus. Graph Transformation for Verification and Concurrency (2007)Google Scholar
  11. 11.
    Jensen, O., Milner, R.: Bigraphs and mobile processes. Technical Report 580, Computer Laboratory, University of Cambridge (2003)Google Scholar
  12. 12.
    Levi, F., Sangiorgi, D.: Mobile safe ambients. ACM Trans. Program. Lang. Syst. 25(1), 1–69 (2003)CrossRefGoogle Scholar
  13. 13.
    Merro, M., Zappa Nardelli, F.: Behavioral theory for mobile ambients. Journal of the ACM 52(6), 961–1023 (2005)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Bruni, R., Gadducci, F., Montanari, U.: Normal forms for algebras of connections. Theor.Comp.Sci. 286(2), 247–292 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Corradini, A., Gadducci, F.: An algebraic presentation of term graphs, via gs-monoidal categories. Applied Categorical Structures 7, 299–331 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae 26(3/4), 241–265 (1996)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation I: Basic concepts and double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1, pp. 163–245. World Scientific, Singapore (1997)Google Scholar
  18. 18.
    Drewes, F., Habel, A., Kreowski, H.J.: Hyperedge replacement graph grammars. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1, pp. 95–162. World Scientific, Singapore (1997)Google Scholar
  19. 19.
    Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to graph rewriting with borrowed contexts. Mathematical Structures in Computer Science 16(6), 1133–1163 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Bonchi, F., Gadducci, F., König, B.: Process bisimulation via a graphical encoding. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 168–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Fabio Gadducci
    • 1
  • Giacoma Valentina Monreale
    • 1
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations