Advertisement

Inductively Sequential Term-Graph Rewrite Systems

  • Rachid Echahed
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5214)

Abstract

Definitional trees have been introduced by Sergio Antoy in order to design an efficient term rewrite strategy which computes needed outermost redexes. In this paper, we consider the use of definitional trees in the context of term-graph rewriting. We show that, unlike the case of term rewrite systems, the strategies induced by definitional trees do not always compute needed redexes, in presence of term-graph rewrite systems. We then define a new class called inductively sequential term-graph rewrite systems (istGRS) for which needed redexes are still provided by definitional trees. Systems in this class are not confluent in general. We give additional syntactic criteria over istGRS’s which ensure the confluence property with respect to the set of admissible term-graphs.

Keywords

Graph Transformation Graph Grammar Operation Symbol Declarative Language Node Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antoy, S.: Definitional trees. In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS, vol. 632, pp. 143–157. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  2. 2.
    Antoy, S.: Evaluation strategies for functional logic programming. Journal of Symbolic Computation 40(1), 875–903 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Antoy, S., Braßel, B.: Computing with subspaces. In: Proc. of the 9th International ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming (PPDP 2007), pp. 121–130. ACM Press, New York (2007)Google Scholar
  4. 4.
    Antoy, S., Brown, D.W., Chiang, S.-H.: Lazy context cloning for non-deterministic graph rewriting. Electr. Notes Theor. Comput. Sci. 176(1), 3–23 (2007)CrossRefGoogle Scholar
  5. 5.
    Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. J. ACM 47(4), 776–822 (2000)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Barendregt, H., van Eekelen, M., Glauert, J., Kenneway, R., Plasmeijer, M.J., Sleep, M.: Term graph rewriting. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 141–158. Springer, Heidelberg (1987)Google Scholar
  7. 7.
    Bert, D., Echahed, R.: Abstraction of Conditional Term Rewriting Systems. In: Lloyd, J. (ed.) Proc. of International Logic Programming Symposiumon (ILPS), pp. 162–176. MIT Press, Cambridge (1995)Google Scholar
  8. 8.
    Duval, D., Echahed, R., Prost, F.: Modeling pointer redirection as cyclic term-graph rewriting. Electr. Notes Theor. Comput. Sci. 176(1), 65–84 (2007)CrossRefGoogle Scholar
  9. 9.
    Echahed, R., Janodet, J.C.: Admissible graph rewriting and narrowing. In: Proc. of Joint International Conference and Symposium on Logic Programming (JICSLP 1998), pp. 325–340. MIT Press, Cambridge (1998)Google Scholar
  10. 10.
    Echahed, R., Janodet, J.-C.: Parallel admissible graph rewriting. In: Fiadeiro, J.L. (ed.) WADT 1998. LNCS, vol. 1589, pp. 122–137. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Echahed, R., Peltier, N.: Narrowing data-structures with pointers. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 92–106. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Echahed, R., Peltier, N.: Non strict confluent rewrite systems for data-structures with pointers. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 137–152. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformations, Applications, Languages and Tools, vol. 2. World Scientific, Singapore (1999)Google Scholar
  14. 14.
    Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformations, Concurrency, Parallelism and Distribution, vol. 3. World Scientific, Singapore (1999)Google Scholar
  15. 15.
    Hanus, M.: Call pattern analysis for functional logic programs. In: Proc. of the 10th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP 2008) (July 2008) (to appear)Google Scholar
  16. 16.
    Hußmann, H.: Nondeterministic algebraic specifications and nonconfluent term rewriting. J. Log. Program 12(3&4), 237–255 (1992)zbMATHCrossRefGoogle Scholar
  17. 17.
    Kennaway, J.R., Klop, J.K., Sleep, M.R., Vries, F.J.D.: On the adequacy of graph rewriting for simulating term rewriting. ACM Transactions on Programming Languages and Systems 16(3), 493–523 (1994); previous version: Technical Report CS-R9204, CWI, Amsterdam (1992)CrossRefGoogle Scholar
  18. 18.
    López-Fraguas, F.J., Rodríguez-Hortalá, J., Sánchez-Hernández, J.: A simple rewrite notion for call-time choice semantics. In: PPDP, the 9th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, Wroclaw, Poland, July 14-16, 2007, pp. 197–208. ACM, New York (2007)Google Scholar
  19. 19.
    Plump, D.: Term graph rewriting. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation, vol. 2, pp. 3–61. World Scientific, Singapore (1999)Google Scholar
  20. 20.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformations, Foundations, vol. 1. World Scientific, Singapore (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rachid Echahed
    • 1
  1. 1.CNRS, LIGGrenobleFrance

Personalised recommendations