Advertisement

Development of Correct Graph Transformation Systems

  • Karl-Heinz Pennemann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5214)

Abstract

A major goal of this thesis is the ability to determine the correctness of graphical specifications consisting of a graph precondition, a graph program and graph postcondition. According to Dijkstra, the correctness of program specifications can be shown by constructing a weakest precondition of the program relative to the postcondition and checking whether the precondition implies the weakest precondition. With the intention of tool support, we investigate the construction of weakest graph preconditions, consider fragments of graph conditions, for which the implication problem is decidable, and investigate an approximative solution of said problem in the general case. All research is done within the framework of adhesive high-level replacement categories. Therefore, the results will be applicable to different kinds of transformation systems and petri nets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Habel, A., Pennemann, K.-H., Rensink, A.: Weakest preconditions for high-level programs. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 445–460. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Pennemann, K.H.: Resolution-like theorem proving for high-level conditions. In: Ehrig, H., et al. (eds.) Proc.ICGT 2008. LNCS, vol. 5214. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Pennemann, K.H.: An algorithm for approximating the satisfiability problem of high-level conditions. In: Proc. GT-VC 2007. ENTCS, vol. 213, pp. 75–94. Elsevier, Amsterdam (2008)Google Scholar
  4. 4.
    Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems relative to nested conditions. MSCS (accepted for publication, 2008)Google Scholar
  5. 5.
    Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions. Fundamenta Informaticae 26(3/4), 287–313 (1996)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Heckel, R., Wagner, A.: Ensuring consistency of conditional graph grammars. In: SEGRAGRA 1995. ENTCS, vol. 2, pp. 95–104 (1995)Google Scholar
  7. 7.
    Koch, M., Mancini, L., Parisi-Presicce, F.: Graph-based specification of access control policies. JCSS 71, 1–33 (2005)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.H.: Constraints and Application Conditions: From Graphs to High-Level Structures. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 287–303. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Pennemann, K.H.: Generalized constraints and application conditions for graph transformation systems. Master’s thesis, Department of Computing Science, University of Oldenburg, Oldenburg (2004)Google Scholar
  10. 10.
    Rensink, A.: Representing first-order logic by graphs. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Habel, A., Pennemann, K.H.: Nested constraints and application conditions for high-level structures. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol. 3393, pp. 293–308. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.H.: Theory of constraints and application conditions: From graphs to high-level structures. Fundamenta Informaticae 74, 135–166 (2006)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Habel, A., Plump, D.: Computational completeness of programming languages based on graph transformation. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 230–245. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Azab, K., Habel, A., Pennemann, K.H., Zuckschwerdt, C.: ENFORCe: A system for ensuring formal correctness of high-level programs. In: Proc. GraBaTs 2006. ECEASST, vol. 1, pp. 82–93 (2007)Google Scholar
  15. 15.
    Zuckschwerdt, C.: Ein System zur Transformation von Konsistenz in Anwendungsbedingungen. Berichte aus dem Department für Informatik 11/06, 114 pages, Universität Oldenburg (2006)Google Scholar
  16. 16.
    Habel, A., Pennemann, K.H.: Satisfiability of high-level conditions. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 430–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Karl-Heinz Pennemann
    • 1
  1. 1.University of OldenburgGermany

Personalised recommendations