Attributed Graph Constraints

  • Fernando Orejas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5214)


Graph constraints were introduced in the area of graph transformation, in connection with the notion of (negative) application conditions, as a form to limit the applicability of transformation rules. However, in a previous paper, we showed that graph constraints may also play a significant role in the area of visual software modelling or in the specification and verification of semi-structured documents or websites (i.e. HTML or XML sets of documents). In that paper we present a sound and complete proof system for reasoning with this kind of constraints. Those results apply, in principle, to any category satisfying some given properties, but the category of (typed) attributed graphs does not satisfy these properties. In particular, the proof rules introduced for reasoning with standard graph constraints allow us to infer infinitary formulas, making the logic incomplete. In addition, using the straightforward generalization of standard graph constraints, there is no obvious way of stating properties about the attributes of the given graphs.

In this paper we introduce a new formulation for attributed graph constraints. More precisely, the idea is to see these constraints as standard graph constraints whose attributes are just variables, together with a logic formula that expresses properties that must be satisfied by these attributes. Then a proof system, which extends the one introduced in the previous paper, is presented and it is shown to be sound and complete.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alpuente, M., Ballis, D., Falaschi, M.: Automated Verification of Web Sites Using Partial Rewriting. Software Tools for Technology Transfer 8, 565–585 (2006)CrossRefGoogle Scholar
  2. 2.
    Courcelle, B.: The expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic. In: [17], pp. 313–400 (1997)Google Scholar
  3. 3.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  4. 4.
    Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.-H.: Constraints and Application Conditions: From Graphs to High-Level Structures. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 287–303. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Ehrig, H., Habel, A.: Graph Grammars with Application Conditions: From Graphs to High-Level Structures. In: Rozenberg, G., Salomaa, A. (eds.) The Book of L, pp. 87–100. Springer, Heidelberg (1986)Google Scholar
  6. 6.
    Ellmer, E., Emmerich, W., Finkelstein, A., Nentwich, C.: Flexible Consistency Checking. ACM T. on Soft. Eng. and Methodology 12(1), 28–63 (2003)CrossRefGoogle Scholar
  7. 7.
    Habel, A., Heckel, R., Taentzer, G.: Graph Grammars with Negative Application Conditions. Fundam. Inform. 26(3/4), 287–313 (1996)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Habel, A., Pennemann, K.-H.: Nested Constraints and Application Conditions for High-Level Structures. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol. 3393, pp. 293–308. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Habel, A., Pennemann, K.-H.: Satisfiability of High-Level Conditions. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 430–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Heckel, R., Wagner, A.: Ensuring Consistency of Conditional Graph Grammars - A Constructive Approach. In: Proceedings SEGRAGRA 1995. Electr. Notes Theor. Comput. Sci, vol. 2, pp. 118–126 (1995)Google Scholar
  11. 11.
    Jaffar, J., Maher, M., Marriot, K., Stukey, P.: The semantics of constraint logic programs. The Journal of Logic Programming (37), 1–46 (1998)zbMATHCrossRefGoogle Scholar
  12. 12.
    Jelliffe, R.: “Schematron”, Internet Document (May 2000),
  13. 13.
    Lucio, P., Orejas, F., Pasarella, E., Pino, E.: A Functorial Framework for Constraint Normal Logic Programming. Abstract Categorical Structures 3, 421–450 (2008)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-Based Theorem Proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, Elsevier Science and MIT Press (2001)Google Scholar
  15. 15.
    Orejas, F., Ehrig, H., Prange, U.: A Logic of Graph Constraints. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 179–198. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Rensink, A.: Representing First-Order Logic Using Graphs. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1. World Scientific, Singapore (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Fernando Orejas
    • 1
  1. 1.Dpt. L.S.I.Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations