Advertisement

Semantical Correctness and Completeness of Model Transformations Using Graph and Rule Transformation

  • Hartmut Ehrig
  • Claudia Ermel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5214)

Abstract

An important requirement of model transformations is the preservation of the behavior of the original model. A model transformation is semantically correct if for each simulation run of the source system we find a corresponding simulation run in the target system. Analogously, we have semantical completeness, if for each simulation run of the target system we find a corresponding simulation run in the source system.

In our framework of graph transformation, models are given by graphs, and graph transformation rules are used to define the operational behavior of visual models (called simulation rules). In order to compare the semantics of source and target models, we assume that in both cases operational behavior can be defined by simulation rules. The model transformation from source to target models is given by another set of graph transformation rules. These rules are also applied to the simulation rules of the source model. The main result in this paper states the conditions for model and rule transformations to be semantically correct and complete. The result is applied to analyze the behavior of a model transformation from a domain-specific visual language for production systems to Petri nets.

Keywords

Model Transformation Rule Transformation Operational Semantic Target Model Graph Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Narayanan, A., Karsai, G.: Using Semantic Anchoring to Verify Behavior Preservation in Graph Transformations. In: Proc. Workshop on Graph and Model Transformation (GraMoT 2006). EC-EASST, EASST, vol. 4 (2006)Google Scholar
  2. 2.
    Ermel, C.: Simulation and Animation of Visual Languages based on Typed Algebraic Graph Transformation. PhD thesis, Technische Universität Berlin,fak, IV, Books on Demand, Norderstedt (2006)Google Scholar
  3. 3.
    Ermel, C., Ehrig, H., Ehrig, K.: Semantical Correctness of Simulation-to-Animation Model and Rule Transformation. In: Proc. Workshop on Graph and Model Transformation (GraMoT 2006). EC-EASST, vol. 4, EASST (2006)Google Scholar
  4. 4.
    Ermel, C., Ehrig, H.: Behavior-preserving simulation-to-animation model and rule transformation. In: Proc. Workshop on Graph Transformation for Verification and Concurrency (GT-VC 2007). ENTCS, vol. 213(1), pp. 55–74. Elsevier Science, Amsterdam (2008)Google Scholar
  5. 5.
    Ehrig, H., Ermel, C.: Semantical Correctness and Completeness of Model Transformations using Graph and Rule Transformation: Long Version. Technical Report 2008-13, TU Berlin (2008), http://iv.tu-berlin.de/TechnBerichte/2008/2008-13.pdf
  6. 6.
    de Lara, J., Vangheluwe, H.: Translating Model Simulators to Analysis Models. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 77–92. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Attributed Graph Transformation with Node Type Inheritance. Theoretical Computer Science 376(3), 139–163 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. EATCS Monographs in Theor. Comp. Science. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  9. 9.
    Kreowski, H.-J.: A Comparison between Petri Nets and Graph Grammars. In: Noltemeier, H. (ed.) WG 1980. LNCS, vol. 100, pp. 1–19. Springer, Heidelberg (1981)Google Scholar
  10. 10.
    Ehrig, H., Ehrig, K.: Overview of Formal Concepts for Model Transformations based on Typed Attributed Graph Transformation. In: Proc. Workshop on Graph and Model Transformation (GraMoT 2005). ENTCS, vol. 152. Elsevier, Amsterdam (2005)Google Scholar
  11. 11.
    Varró, D.: Automated formal verification of visual modeling languages by model checking. Software and System Modeling 3(2), 85–113 (2004)CrossRefGoogle Scholar
  12. 12.
    Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hartmut Ehrig
    • 1
  • Claudia Ermel
    • 1
  1. 1.Department of Theoretical Computer Science and Software TechnologyTechnische Universität Berlin 

Personalised recommendations