Advertisement

Formal Analysis of Model Transformations Based on Triple Graph Rules with Kernels

  • Hartmut Ehrig
  • Ulrike Prange
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5214)

Abstract

Triple graph transformation has become an important approach for model transformations. Triple graphs consist of a source, a target and a connection graph. The corresponding rules also contain these parts and describe the simultaneous construction of both the source and the target model. From these rules, forward rules can be derived which describe the model transformation from a given source model to a target model. The forward transformation must be source consistent in order to define a valid model transformation. Source consistency implies that the source and the target model correspond to each other according to a triple transformation.

In this paper, the relationship between the source consistency of forward transformations, and NAC consistency and termination used in other model transformation approaches is analysed from a formal point of view. We define the kernel of a forward rule and construct NACs based on this kernel. Then we give sufficient conditions such that source consistency implies NAC consistency and termination. Moreover, we analyse how to achieve local confluence independent of source consistency. Both results together provide sufficient conditions for functional behaviour of model transformations. Our results are illustrated by an example describing a model transformation from activity diagrams to CSP.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995)Google Scholar
  2. 2.
    Aschenbrenner, N., Geiger, L.: Transforming Scene Graphs Using Triple Graph Grammars - A Practice Report. In: Proceedings of AGTIVE 2007 (2007)Google Scholar
  3. 3.
    Guerra, E., de Lara, J.: Model View Management with Triple Graph Transformation Systems. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 351–366. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Giese, H., Wagner, R.: Incremental Model Synchronization with Triple Graph Grammars. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 543–557. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Preserving Bidirectional Model Transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Ehrig, H., Ehrig, K., Hermann, F.: From Model Transformation to Model Integration Based on the Algebraic Approach to Triple Graph Grammars. ECEASST (to appear, 2008)Google Scholar
  7. 7.
    Kindler, E., Wagner, R.: Triple Graph Grammars: Concepts, Extensions, Implementations, and Application Scenarios. Technical Report tr-ri-07-284, University of Paderborn (2007)Google Scholar
  8. 8.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. EATCS Monographs. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  9. 9.
    OMG: Unified Modeling Language, version 2.1.1 (2006)Google Scholar
  10. 10.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  11. 11.
    Bisztray, D., Ehrig, K., Heckel, R.: Case Study: UML to CSP Transformation. In: AGTIVE 2007 Graph Transformation Tool Contest (2007)Google Scholar
  12. 12.
    Lambers, L.: Adhesive High-Level Replacement Systems with Negative Application Conditions. Technical Report 2007/14, TU Berlin (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hartmut Ehrig
    • 1
  • Ulrike Prange
    • 1
  1. 1.Technische Universität BerlinGermany

Personalised recommendations