Advertisement

Creation and Error Analysis of High Resolution DEM Based on Source Data Sets of Various Accuracy

  • Jari Pohjola
  • Jari Turunen
  • Tarmo Lipping
  • Ari Ikonen
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Digital Elevation Models (DEMs) are extensively used as basic components of geographic information systems. Our purpose in this study was to generate a high-resolution DEM based on available elevation data of varying levels of accuracy and reliability. High-resolution DEM can be used as an input for modeling landscape development of the Olkiluoto region in Finland, a future repository site for spent nuclear fuel. We also generated error models for the newly created DEM. Our approach uses thin plate approximation and Monte Carlo simulations. Our results show that our proposed framework enables validation and identification of flaws in various source data sets even if little is known a priori about their accuracy. Thin plate approximation is shown to perform well in the case of DEM generation. In the case of sparsely and irregularly located source measurements, the smoothness of the generated DEM is highly dependent on the local interpolation neighbourhood

Keywords

Digital Elevation Model Geographic Information System Spend Nuclear Fuel Digital Elevation Model Generation Generate Error Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.T.K. Ikonen, V. Leppönen, M. Gunia, R. Broed, 2008. Handling of climate and future human actions as scenario uncertainty within terrain ecosystems as a part of biosphere assessment for the Olkiluoto site. Radioprotection, a Supplement on International Conference on Radioecology & Environmental Radioactivity, 15-20.6.2008, Bergen, Norway (approved for printing).Google Scholar
  2. 2.
    A.T.K. Ikonen, T. Hjerpe, L. Aro and V. Leppönen, 2007. Terrain and ecosystems development model of Olkiluoto site, version 2006. Posiva Working report 2007-110. Posiva Oy, Olkiluoto, Finland.Google Scholar
  3. 3.
    Q-K.Yang, T. McVicar, T. Van Niel, M. Hutchinson, L-T. Li, X-P Zhang, 2007. Improving a digital elevation model by reducing source data errors and optimizing interpolation algorithm parameters: An example in the Loess Plateau, China. International Journal of Applied Earth Observation and Geoinformation, 9, 235-246.CrossRefGoogle Scholar
  4. 4.
    S. Hosford, N. Baghdadi, B. Bourgine, P. Daniels, C. King, 2003. Fusion of airborne laser altimeter and RADARSAT data for DEM generation. Proceedings on IEEE International. Geoscience and Remote Sensing Symposium, IGARSS ‘03, Volume 2, 806-808.Google Scholar
  5. 5.
    J. Bamber, J. Gomez-Dans, 2005. The accuracy of digital elevation models of the Antarctic continent. Earth and Planetary Science Letters, 237, 516-523.CrossRefGoogle Scholar
  6. 6.
    J. Oksanen, T. Sarjakoski, 2006. Uncovering the statistical and spatial characteristics of fine toposcale DEM error. International Journal of Geographical Information Science, 20 (4), 345-369.CrossRefGoogle Scholar
  7. 7.
    U. Sefercik, 2007. Comparison of DEM Accuracies Generated by Various Methods. Proceedings of 3rd International Conference on Recent Advances in Space Technologies, 2007. RAST ‘07, 379 - 382.Google Scholar
  8. 8.
    P. Atkinson, C. Lloyd, 2007. Non-stationary variogram models for geostatistical sampling optimisation: An empirical investigation using elevation data. Computers & Geosciences, 33, 1285-1300.Google Scholar
  9. 9.
    V. Chaplot, F. Darboux, H. Bourennane, S. Leguédois, N. Silvera, K. Phachomphon, 2006. Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density. Geomorphology, 77, 126-141.CrossRefGoogle Scholar
  10. 10.
    J. Wood, P. Fisher, 1993. Assessing interpolation accuracy in elevation models. IEEE Computer Graphics and Applications,13,(2), 48 - 56.CrossRefGoogle Scholar
  11. 11.
    T-X. Yue, Z-P. Du, D-J. Song, Y. Gong, 2007. A new method of surface modelling and its application to DEM construction. Geomorphology, 91, 161-172.CrossRefGoogle Scholar
  12. 12.
    P. Pilesjö, A. Persson, L. Harrie, 2006. Digital elevation data for estimation potential wetness in ridged fields-Comparison of two different methods. Agricultural Water Management, 79, 225-247.CrossRefGoogle Scholar
  13. 13.
    J. Oksanen, T. Sarjakoski, 2005. Error propagation of DEM-based surface derivatives. Computers & Geosciences, 31, 1015-1027.CrossRefGoogle Scholar
  14. 14.
    L. Raaflaub, M. Collins, 2006. The effect of error in gridded digital elevation models on the estimation of topographic parameters. Environmental Modelling & Software, 21, 710-732.CrossRefGoogle Scholar
  15. 15.
    J. Li, H. Huang, D. Liang, 2007. A multi-baseline InSAR DEM reconstruction approach without ground control points. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2007, 4509 – 4512.Google Scholar
  16. 16.
    A. Temme, J. Schoorl, A. Veldkamp, 2006. Algorithm for dealing with depressions in dynamic landscape evolution models. Computers & Geosciences, 32, 452-461.CrossRefGoogle Scholar
  17. 17.
    S. Grimaldi, F. Nardi, F. Di Benedetto, E. Istanbulluoglu, R. Bras, 2007. A physically-based method for removing pits in digital elevation models. Advances in Water Resources, 30, 2151-2158.CrossRefGoogle Scholar
  18. 18.
  19. 19.
    C De Boor, 2007. Matlab Spline Toolbox 3: User’s guide. The Mathworks Inc., Massachusetts.Google Scholar
  20. 20.
    G. Donaldo, S. Belonge, 2002. Approximate Thin Plate Spline Mappings. Lecture Notes in Computer Science, 2352, Springer Berlin, 13-31.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jari Pohjola
    • 1
  • Jari Turunen
    • 1
  • Tarmo Lipping
    • 1
  • Ari Ikonen
    • 1
  1. 1.Information TechnologyPori, Tampere University of TechnologyFinland

Personalised recommendations