Skip to main content

Hierarchical Modelling of Multi-Geospatial Databases as Basis for Geo-Oriented 3D Analysis Capabilities

  • Chapter

Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

Geospatial databases representing the natural environment are widely used and applicable for various mapping and engineering applications. Nowadays, the development of state-of-the-art measurement tools gives updated and more precise knowledge regarding the morphology of the acquired object, i.e., terrain relief. Geospatial analysis, such as comparison or integration, of two (or more) databases acquired on different epochs, while relying solely on their coordinate reference systems, will usually result in a wrong outcome. This occurs mainly because of inherent non-uniform topographic and topologic inconsistencies - as well as morphologic changes transpired - between the databases. Investigating and monitoring these factors prior to actual data analysis is essential. This paper suggests the division of the databases’ mutual coverage area into homogeneous separate hierarchical working levels. 2-stage monitoring process involving spatial registration and matching is implemented. This enables to properly define, model and store the complete spatial local interrelations of the databases. Utilizing these values yields novel mathematical and analyzing geo-oriented capabilities, thus enabling visualization, simulation and integration processes.

Keywords

  • Hierarchical Modelling
  • Markov Chain Model
  • Digital Terrain Model
  • Coordinate Reference System
  • Triangulate Irregular Network

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-87395-2_19
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-87395-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hutchinson, M.F. and Gallant, J.C.: Digital Elevation Models and Representation of Terrain Shape, in Terrain Analysis: Principles and Applications, Wilson, J.P. and Gallant, J.C., Eds., John Wiley and Sons, Inc., New York, (2000), chap.2.

    Google Scholar 

  2. Wilson, J.P., Repetto, P.L., and Snyder, R.D.: Effect of Data Source, Grid Resolution, and Flow-Routing Method on Computed Topographic Attributes, in Terrain Analysis: Principles and Applications, Wilson, J.P. and Gallant, J.C., Eds., John Wiley and Sons, Inc., New York, (2000), chap.5.

    Google Scholar 

  3. Laurini R.: Spatial Multi-Database Topological Continuity and Indexing: A Step Towards Seamless GIS Data Interoperability, International Journal of Geographical Information Science, Vol. 12, No. 4, (1998) 373-402.

    CrossRef  Google Scholar 

  4. Brown, L.G.: A survey of image registration techniques, ACM Computing Surveys (CSUR), Vol. 24, Issue 4, (1992) 325-376.

    CrossRef  Google Scholar 

  5. Rusinkiewicz, S. and Levoy, M.: Efficient Variants of the ICP Algorithm, in Proc. 3D Digital Imaging and Modeling, IEEE Computer Society Press, (2001) 145-152.

    Google Scholar 

  6. Zhengyou, Z.: Iterative Point Matching for Registration of Free-Form Curves and Surfaces, Int. J. of Computer Vision, Vol. 13, Issue 2, (1993) 119-152.

    Google Scholar 

  7. Huttenlocher, D. P., G. A. Klanderman, and W. J. Rucklidge: Comparing Images Using the Hausdorff Distance, IEEE Trans. Pattern Intelligence and machine intelligence, (1993) 9:850-863.

    CrossRef  Google Scholar 

  8. Stockman, G., S. Kopstein, and S. Benett: Matching Images to Models for Registration and Object Detection Via Clustering, Pattern analysis and machine intelligence, (1982) 4(3):229-241.

    CrossRef  Google Scholar 

  9. Lamdan Y., Schwartz J.T. and Wolfson H.J.: Object Recognition by Affine Invariant Matching’. Proc. CVPR, (1988) 335-344.

    Google Scholar 

  10. Mount D. M., Netanyahu N. S., and Le Moigne J., Efficient Algorithms for Robust Feature Matching. Pattern Recognition 32(13) (1998) 17-28.

    Google Scholar 

  11. Besl, P.J. and McKay, N.D.: A method for Registration of 3-D Shapes, in IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, (1992) 239-256.

    CrossRef  Google Scholar 

  12. Gruen, A.: Least Squares Matching: a Fundamental Measurement Algorithm, in Close range photogrammetry and machine vision, Atkinson K.B., Ed., Whittles Publishing, Caithness, (1996) chap. 8.

    Google Scholar 

  13. Dalyot, S., and Doytsher, Y.: A Hierarchical Approach toward 3-D Geo-Spatial Terrain Merging, ISPRS Int. Archives, Commission IV Symposium, 25-30 September, Goa, India, Volume XXXVI part 4 (2006).

    Google Scholar 

  14. C.S. Yang, S.P. Yang, F.B. Kao and P.S Hung: Twelve Different Interpolation Methods: A Case Study of Surfer 8.0, Proc. of the XXth, ISPRS Congress, Turkey, 2004, pp. 778-785.

    Google Scholar 

  15. Foley, J.D., A. Van Dam, S.K. Feiner, and J.F. Hughes: Computer Graphics - Principles and Practice, Addison-Wesley, Reading Mass, 1996.

    Google Scholar 

  16. Doythser, Y. and Hall, J.K.: Interpolation of DTM using bi-directional third-degree parabolic equations, with FORTRAN subroutines, in Computers and Geosciences, Volume 23, Number 9, (1997) 1013-1020(8).

    Google Scholar 

  17. Cayley, A., An Elementary Treatise on Elliptic Functions, Dover, New-York, 1961.

    Google Scholar 

  18. Shoemake, K.: Animating Rotation with Quaternion curves, Computer Graphics, 19(3), 1985, pp. 245-254.

    CrossRef  Google Scholar 

  19. Bezier, P.: Numerical Control: Mathematics and Applications, Wiley, Chichester, UK, 1972.

    Google Scholar 

  20. B.E. Dam, M. Koch, M. Lillholm: Quaternions, Interpolation and Animation, Technical report DIKU-TR9815, Department of Computer Science, Univ. of Copenhagen, 1998.

    Google Scholar 

  21. Abo-Akel N., Filin S., and Doytsher, Y.: Orthogonal Polynomials Supported by Region Growing Segmentation for the Extraction of Terrain from LiDAR Data. Photogrammetric Engineering & Remote Sensing, 73(11): pp. 1253-1266, 2007.

    Google Scholar 

  22. Podobnikar T.: Production of Integrated Digital Terrain Model from Multiple Datasets of Different Quality, Int. Journal of Geographical Information Science, Vol. 19, No. 1, pp. 69, 2005.

    CrossRef  Google Scholar 

  23. Frederiksen P., Grum J., and Joergensen L.T.: Strategies for Updating a National 3-D Topographic Database and Related Geoinformation, Proc. ISPRS XXth Congress, Com. WG II/IV, 2004.

    Google Scholar 

  24. Heipke C.: Some Requirements for Geographic Information Systems: A Photogrammetric Point of View1, Photogrammetric Engineering & Remote Sensing, Vol. 70, No. 2, February (2004) 185–195.

    Google Scholar 

  25. Koch A., and Heipke C.: Semantically Correct 2.5D GIS Data - the Integration of a DTM and Topographic Vector Data, Fisher, P., Ed., Developments in Spatial Data Handling, Berlin, Springer, (2004) 509-526.

    Google Scholar 

  26. Walter, V. and Fritsch, D.: Matching spatial data sets: a statistical approach, in Int. J. of geographical information science, Vol. 13, No. 5, (1999) 445-473(29).

    CrossRef  Google Scholar 

  27. Katzil Y., and Doytsher Y.: Spatial Rubber Sheeting of DTMs, In Proc. 6th Geomatic Week Conference, Barcelona, Spain, (2005).

    Google Scholar 

  28. Scho D. R. Szeliski, D.H. Salesin, and I. Essa: Video Textures, Proc. ACM SIGGRAPH ‘00, pp. 489-498, 2000.

    Google Scholar 

  29. Zhouchen L., Lifeng W., Yunbo W., Kang, S.B., and Tian F.: High Resolution Animated Scenes from Stills Visualization and Computer Graphics, IEEE Transactions on Volume 13, Issue 3, May-June 2007 Page(s):562–568.

    Google Scholar 

  30. J. T. Stasko: The Path-Transition Paradigm: a Practical Methodology for Adding Animation to Program Interfaces. Journal of Visual Languages and Computing 1, 213-236, 1990.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dalyot, S., Doytsher, Y. (2009). Hierarchical Modelling of Multi-Geospatial Databases as Basis for Geo-Oriented 3D Analysis Capabilities. In: Lee, J., Zlatanova, S. (eds) 3D Geo-Information Sciences. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87395-2_19

Download citation