Advertisement

Modelling Home and Work Locations of Populations Using Passive Mobile Positioning Data

  • Rein Ahas
  • Siiri Silm
  • Erki Saluveer
  • Olle Järv
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

The article introduces a model that uses passive mobile positioning data to determine respondents’ home and work anchor point locations. Passive mobile positioning data is secondary data concerning the location of call activities or hand-overs in network cells, which is automatically stored in the log files of service providers. This data source offers good potential for monitoring of the short-term mobility of populations, since mobile phones are widespread, and similar standardised data can be used around the globe. We developed the model and tested it with 12 months’ data collected by Estonia’s largest mobile service provider EMT, covering more than 0.5 million anonymous respondents. Modelling results were compared with population register data; this revealed that the developed model described the geography of the population relatively well, and can hence be used as a quantitative source in the study of population geography or for developing location-based services.

Keywords

population geography mobile positioning location-based services anchor points modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahas R, Aasa A, Roose A, Mark Ü, Silm S (2008) Evaluating passive mobile positioning data for tourism surveys: An Estonian case study. Tourism Management 29:469–486.Google Scholar
  2. Ahas R, Aasa A, Silm S, Aunap R, Kalle H, Mark Ü (2007a) Mobile Positioning in Space-Time Behaviour Studies: Social Positioning method Experiments in Estonia. Cartography and Geographic Information Science 34(4):259–273.CrossRefGoogle Scholar
  3. Ahas R, Jauhiainen J, Silm S, Nuga M, Tähepõld A, Saluveer E, Kivi K (2007b) Tallinna ja ümbritsevate omavalitsuste koostöövõimalused ja perspektiivid valglinnastumise kontekstis. Tartu, University of Tartu, Institute of Geography.Google Scholar
  4. Ahas R, Mark Ü (2005) Location based services – new challenges for planning and public administration? Futures 37:547–561.CrossRefGoogle Scholar
  5. Chen XL, Zhao HM, Li PX (2006) Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote sensing of environment 104(2):133–146.CrossRefGoogle Scholar
  6. Dijst M (1999) Two-earner families and their action spaces: A case study of two dutch communities. GeoJournal 4(3):195–206.CrossRefGoogle Scholar
  7. Eagle N, Pentland A (2005) Reality mining: Sensing complex social systems. Personal and Ubiquitous Computing 10(4):255–268.CrossRefGoogle Scholar
  8. Golledge RG (1990) Cognition of physical and built environments. In Environment, cognition and action; a multidisciplinary integrative approach, ed Garling T, Evans G. New York: Oxford University Press.Google Scholar
  9. Golledge RG, Gärling T (2001) Spatial behaviour in transportation modeling and planning. In Transportation and Engineering Handbook, ed Goulias K.Google Scholar
  10. Golledge RG, Stimson RJ (1997) Spatial behavior: a geographical perspective. New York: The Guilford Press.Google Scholar
  11. Järv O, Saluveer E, Ahas R (2007) Analysis of traffi c distribution and frequencies in Kose- Võõbu and Võõbu-Mäo units of E263 Tallinn-Tartu-Luhamaa highway (E263 Tallinna- Tartu-Luhamaa maantee Kose-Võõbu ja Võõbu-Mäo lõikude liiklusuuring mobiilpositsioneerimise abil). Tartu: Positium LBS.Google Scholar
  12. Kwan MP (2000) Gender differences in space-time constraints. Area 32(2):145–156.Google Scholar
  13. Leetmaa K, Tammaru T, Anniste K (2009) Urban actors and residential suburbanisation in the Tallinn metropolitan area. In Special issue: Neighbourhood change in European cities: new developments in the context of the changing role of the state., ed Van Kempen R, Murie A. Tijdschrift voor Economische en Sociale Geografie.Google Scholar
  14. Mountain D, Raper J (2001) Modelling human spatio-temporal behaviour: a challenge for location-based services. Proc. of the 6th Internat. Conference on GeoComputation. Brisbane, Australia: University of Queensland.Google Scholar
  15. Nurmi P, Koolwaaij J (2006) Identifying meaningful locations. 3rd Annual International Conference on Mobile and Ubiquitous Systems: Networks and Services (MobiQuitous). San Jose, CA, IEEE Computer Society.Google Scholar
  16. Raymer J, Abel G, Smith PWF (2007) Combining census and registration data to estimate detailed elderly migration fl ows in England and Wales. Journal Of The Royal Statistical Society Series A-Statistics In Society 170(4):891–908.CrossRefGoogle Scholar
  17. Reades J, Calabrese F, Sevtsuk A, Ratti C (2007) Cellular census: Explorations in urban data collection. IEEE Pervasive Computing 6(3):30–38.CrossRefGoogle Scholar
  18. Reuters (2007) Global cell phone use at 50 percent. 29 November 2007 http://www.reuters. com/article/rbssTechMediaTelecomNews/idUSL2917209520071129
  19. Shoval N (2007) Sensing Human Society. Environment and Planning B 34:191–195.CrossRefGoogle Scholar
  20. Silm S, Ahas R, Nuga M (200x) Gender differences in space-time mobility of dwellers from new residential areas in the suburbs of Tallinn. Europe Asia Studies. (Forthcoming).Google Scholar
  21. Silm S, Järv O (2007) Summerhouses, users and usage frequencies in Saku county (Saku valla suvilate kasutuse uuring). Tartu, Positium LBS.Google Scholar
  22. Silm S, Järv O, Ahas R (2007) Urban sprawl in Kuressaare Urban Region (Valglinnastumine ja sellest lähtuvad mõjud Kuressaare linnaregioonis: esmane analÜÜs ja ettepanekud planeerijatele). Tartu: Positium LBS.Google Scholar
  23. Spinney JE (2003) Mobile positioning and LBS applications. Geography 88:256–265.Google Scholar
  24. Zhao Y (2002) Standardization of mobile phone positioning for 3G systems. IEEE – Communications Magazine 40(7):108–116.CrossRefGoogle Scholar
  25. Tammaru T, Leetmaa K (2007) Suburbanisation in relation to education in the Tallinn metropolitan area. Population, Space and Place 13(4):279–292.CrossRefGoogle Scholar
  26. Tammaru T, Leetmaa K, Silm S, Ahas R (200x) New residential areas in the Tallinn Metropolitan Area. Urban studies (Forthcoming).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rein Ahas
    • 1
  • Siiri Silm
    • 1
  • Erki Saluveer
    • 1
  • Olle Järv
    • 1
  1. 1.Department of GeographyUniversity of TartuEstonia

Personalised recommendations