Skip to main content

Exact Transcriptome Reconstruction from Short Sequence Reads

  • Conference paper
Algorithms in Bioinformatics (WABI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5251))

Included in the following conference series:

Abstract

In this paper we address the problem of characterizing the RNA complement of a given cell type, that is, the set of RNA species and their relative copy number, from a large set of short sequence reads which have been randomly sampled from the cell’s RNA sequences through a sequencing experiment. We refer to this problem as the transcriptome reconstruction problem, and we specifically investigate, both theoretically and practically, the conditions under which the problem can be solved. We demonstrate that, even under the assumption of exact information, neither single read nor paired-end read sequences guarantee theoretically that the reconstruction problem has a unique solution. However, by investigating the behavior of the best annotated human gene set, we also show that, in practice, paired-end reads – but not single reads – may be sufficient to solve the vast majority of the transcript variants species and abundances. We finally show that, when we assume that the RNA species existing in the cell are known, single read sequences can effectively be used to infer transcript variant abundances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adams, M.D., et al.: Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252(5013), 1651–1656 (1991)

    Article  Google Scholar 

  2. Bellin, D., Werber, M., Theis, T., Schulz, B., Weisshaar, B., Schneider, K.: EST Sequencing, Annotation and Macroarray Transcriptome Analysis Identify Preferentially Root-Expressed Genes in Sugar Beet. Plant Biology 4(6), 700–710 (2002)

    Article  Google Scholar 

  3. Bennett, S.T., Barnes, C., Cox, A., Davies, L., Brown, C.: Toward the 1,000 dollars human genome. Pharmacogenomics 6, 373–382 (2005)

    Article  Google Scholar 

  4. Chen, J., Skiena, S.: Assembly For Double-Ended Short-Read Sequencing Technologies. In: Mardis, E., Kim, S., Tang, H. (eds.) Advances in Genome Sequencing Technology and Algorithms. Artech House Publishers (2007)

    Google Scholar 

  5. De Bona, F., Ossowski, S., Schneeberger, K., Rätsh, G.: Optimal Spliced Alignments of Short Sequence Reads. Bioinformatics (in press, 2008)

    Google Scholar 

  6. ENCODE Project Consortium. Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007)

    Google Scholar 

  7. Harrow, J., et al.: GENCODE: producing a reference annotation for ENCODE. Genome Biology 7, S4 (2006)

    Article  Google Scholar 

  8. Heber, S., Alekseyev, M., Sze, S.H., Tang, H., Pevzner, P.A.: Splicing graphs and EST assembly problem. Bioinformatics 18 (suppl. 1), 181–188 (2002)

    Google Scholar 

  9. Hoffmann, K.F., Dunne, D.W.: Characterization of the Schistosoma transcriptome opens up the world of helminth genomics. Genome Biology 5, 203 (2003)

    Article  Google Scholar 

  10. Houde, M., et al.: Wheat EST resources for functional genomics of abiotic stress. BMC Genomics 7, 149 (2006)

    Article  Google Scholar 

  11. Lander, E.S., et al.: Initial sequencing and analysis of the human genome. Nature 409(6822), 860–921 (2001)

    Article  Google Scholar 

  12. Mironov, A.A., Fickett, J.W., Gelfand, M.S.: Frequent alternative splicing of human genes. Genome Research 9, 1288–1293 (1999)

    Article  Google Scholar 

  13. Modrek, B., Resch, A., Grasso, C., Lee, C.: Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Research 29, 2850–2859 (2001)

    Article  Google Scholar 

  14. Pruitt, K.D., Tatusova, T., Maglott, D.R.: NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research. 35, D61-D65 (2007)

    Article  Google Scholar 

  15. Sammeth, M., Foissac, S., Guigo, R.: A General Definition and Nomenclature for Alternative Splicing Events. PLoS Computational Biology (in press, 2008)

    Google Scholar 

  16. Sammeth, M., Valiente, G., Guigo, R.: Bubbles: Alternative Splicing Events of Arbitrary Dimension in Splicing Graphs. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 372–395. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Sugnet, C.W., Kent, W.J., Ares, M., Haussler, D.: Transcriptome and genome conservation of alternative splicing events in humans and mice. In: Proceedings of the Pacific Symposium on Biocomputing, vol. 9, pp. 66–77 (2004)

    Google Scholar 

  18. Weber, A., Weber, K., Carr, K., Wilkerson, C., Ohlrogge, J.: Sampling the Arabidopsis Transcriptome with Massively Parallel Pyrosequencing. Plant Physiology 144, 32–42 (2007)

    Article  Google Scholar 

  19. Xing, Y., Resch, A., Lee, C.: The multiassembly problem: reconstructing multiple transcript isoforms from EST fragment mixtures. Genome Research 14(3), 426–441 (2004)

    Article  Google Scholar 

  20. Xing, Y., Yu, T., Wu, Y.N., Roy, M., Kim, J., Lee, C.: An expectation-maximization algorithm for probabilistic reconstructions of full-length isoforms from splice graphs. Nucleic Acids Research 34, 3150–3160 (2006)

    Article  Google Scholar 

  21. Zerbino, D., Birney, E.: Velvet: Algorithms for de novo short read assembly using de Bruijn Graphs. Genome Research 18, 821–829 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Keith A. Crandall Jens Lagergren

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lacroix, V., Sammeth, M., Guigo, R., Bergeron, A. (2008). Exact Transcriptome Reconstruction from Short Sequence Reads. In: Crandall, K.A., Lagergren, J. (eds) Algorithms in Bioinformatics. WABI 2008. Lecture Notes in Computer Science(), vol 5251. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87361-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87361-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87360-0

  • Online ISBN: 978-3-540-87361-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics