Skip to main content

Volume Reconstruction by Inverse Interpolation: Application to Interleaved MR Motion Correction

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 5241)

Abstract

We introduce in this work a novel algorithm for volume reconstruction from data acquired on an irregular grid, e.g., from multiple co-registered images. The algorithm, which is based on an inverse interpolation formalism, is superior to other methods in particular when the input images have lower spatial resolution than the reconstructed image. Local intensity bounds are enforced by an L-BFGS-B optimizer, regularize the reconstruction problem, and preserve the intensity distribution of the input images. We demonstrate the usefulness of our method by applying it to retrospective motion correction in interleaved MR images.

Keywords

  • Reconstructed Image
  • Mean Square Difference
  • Irregular Grid
  • Pass Image
  • Local Thresholding

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Prager, R.W., Gee, A., Berman, L.: Stradx: real-time acquisition and visualization of freehand three-dimensional ultrasound. Med. Image. Anal. 3(2), 129–140 (1999)

    CrossRef  Google Scholar 

  2. Moore, J., Drangova, M., Wierzbicki, M., Barron, J., Peters, T.: A high resolution dynamic heart model based on averaged MRI data. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 549–555. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  3. Studholme, C., Hill, D.L.G., Hawkes, D.J.: Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. Med. Phys. 24(1), 25–35 (1997)

    CrossRef  Google Scholar 

  4. Rousseau, F., Glenn, O., Iordanova, B., Rodriguez-Carranza, C., Vigneron, D., Barkovich, J., Studholme, C.: A novel approach to high resolution fetal brain MR imaging. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 548–555. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  5. Rohlfing, T.: Incremental method for computing the intersection of discretely sampled m-dimensional images with n-dimensional boundaries. In: Medical Imaging: Image Processing, Proceedings of the SPIE, vol. 5032, pp. 1346–1354 (February 2003)

    Google Scholar 

  6. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    MATH  CrossRef  MathSciNet  Google Scholar 

  7. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)

    MATH  CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rohlfing, T., Rademacher, M.H., Pfefferbaum, A. (2008). Volume Reconstruction by Inverse Interpolation: Application to Interleaved MR Motion Correction. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008. MICCAI 2008. Lecture Notes in Computer Science, vol 5241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85988-8_95

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85988-8_95

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85987-1

  • Online ISBN: 978-3-540-85988-8

  • eBook Packages: Computer ScienceComputer Science (R0)