Skip to main content

Quantitative Cardiac SPECT Imaging

  • Chapter
  • First Online:
  • 2653 Accesses

Abstract

Nuclear cardiac imaging is a typical example that image quantitation has an important role in data interpretation and patient diagnosis. Reproducible and reliable image quantitation relies on robust techniques and well-designed computational algorithms. This in great part related to computer technology and various image-processing tools. However, the principal motivation for computer analysis is to evaluate an attribute of the image as a metric in an algorithmic manner, independent of observer bias or variability [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goris ML, Zhu HJ, Robinson TE (2007) A critical discussion of computer analysis in medical imaging. Proc Am Thorac Soc 4(4):347–349

    Article  PubMed  Google Scholar 

  2. Abidov A, Germano G, Hachamovitch R, Berman DS (2006) Gated SPECT in assessment of regional and global left ventricular function: major tool of modern nuclear imaging. J Nucl Cardiol 13(2):26–79

    Google Scholar 

  3. Watson DD, Campbell NP, Read EK et al (1981) Spatial and temporal quantitation of plane thallium myocardial images. J Nucl Med 22:577–584

    CAS  PubMed  Google Scholar 

  4. Garcia E, Maddahi J, Berman D, Waxman A (1981) Space/time quantitation of thallium-201 myocardial scintigraphy. J Nucl Med 22:309–317

    CAS  PubMed  Google Scholar 

  5. Germano G, Kavanagh PB, Waechter P, Areeda J, Van Kriekinge S, Sharir T, Lewin HC, Berman DS (2000) A new algorithm for the quantitation of myocardial perfusion SPECT. I: technical principles and reproducibility. J Nucl Med 41:712–719

    CAS  PubMed  Google Scholar 

  6. Sharir T, Germano G, Waechter PB, Kavanagh PB, Areeda JS, Gerlach J et al (2000) A new algorithm for the quantitation of myocardial perfusion SPECT. II: validation and diagnostic yield. J Nucl Med 41:720–727

    CAS  PubMed  Google Scholar 

  7. Germano G, Kavanagh PB, Slomka PJ, Van Kriekinge SD, Pollard G, Berman DS (2007 Jul) Quantitation in gated perfusion SPECT imaging: the Cedars-Sinai approach. J Nucl Cardiol 14(4):433–454

    Article  PubMed  Google Scholar 

  8. Faber TL, Cooke CD, Folks RD et al (1999) Left ventricular function and perfusion from gated perfusion images: an integrated method. J Nucl Med 40:650–659

    CAS  PubMed  Google Scholar 

  9. Garcia EV, Faber TL, Cooke CD, Folks RD, Chen J, Santana C (2007) The increasing role of quantification in clinical nuclear cardiology: the Emory approach. J Nucl Cardiol 14(4):420–432

    Article  PubMed  Google Scholar 

  10. Cooke CD, Garcia EV, Cullom SJ, Faber TL, Pettigrew RI (1994) Determining the accuracy of calculating systolic wall thickening using a fast Fourier transform approximation: a simulation study based on canine and patient data. J Nucl Med 35:1185–1192

    CAS  PubMed  Google Scholar 

  11. Ficaro EP, Quaife RA, Kritzman JN, Corbett JR (1999) Accuracy and reproducibility of 3D-MSPECT for estimating left ventricular ejection fraction in patients with severe perfusion abnormalities [abstract]. Circulation 100(suppl):I26

    Google Scholar 

  12. Ficaro EP, Lee BC, Kritzman JN, Corbett JR (2007) Corridor4DM: the Michigan method for quantitative nuclear cardiology. J Nucl Cardiol 14(4):455–465

    Article  PubMed  Google Scholar 

  13. Schaefer WM, Lipke CS, Standke D, Kuhl HP, Nowak B, Kaiser HJ, Koch KC, Buell U (2005) Quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPECT: MRI validation and comparison of the memory cardiac tool box with QGS and 4D- MSPECT. J Nucl Med 46:1256–1263

    PubMed  Google Scholar 

  14. Ficaro EP, Kritzman JN, Corbett JR (2003) Effect of valve plane constraint on LV ejection fractions from gated perfusion SPECT [abstract]. J Nucl Cardiol 10:S23

    Google Scholar 

  15. Nakata T, Katagiri Y, Odawara Y, Eguchi M, Kuroda M, Tsuchihashi K, Hareyama M, Shimamoto K (2000) Two-and three-dimensional assessments of myocardial perfusion and function by using technetium-99m sestamibi gated SPECT with a combination of count- and image-based techniques. J Nucl Cardiol 7:623–632

    Article  CAS  PubMed  Google Scholar 

  16. Hashimoto A, Nakata T, Wakabayashi T, Kyuma M, Takahashi T (2002) Validation of quantitative gated single photon emission computed tomography and an automated scoring system for the assessment of regional left ventricular systolic function. Nucl Med Commun 23:887–898

    Article  CAS  PubMed  Google Scholar 

  17. Goris ML, Thompson C, Malone LJ, Franken PR (1994) Modeling the integration of myocardial regional perfusion and function. Nucl Med Commun 15:9–20

    Article  CAS  PubMed  Google Scholar 

  18. Everaert H, Franken PR, Flamen P et al (1996) Left ventricular ejection fraction from gated SPECT myocardial perfusion studies: a method based on the radial distribution of count rate density across the myocardial wall. Eur J Nucl Med 23:1628–1633

    Article  CAS  PubMed  Google Scholar 

  19. Everaert H, Bossuyt A, Franken PR (1997) Left ventricular ejection fraction and volumes from gated single photon emission tomographic myocardial perfusion images: comparison between two algorithms working in three-dimensional space. J Nucl Cardiol 4:472–476

    Article  CAS  PubMed  Google Scholar 

  20. Liu YH, Sinusas AJ, Khaimov D, Gebuza BI, Wackers FJ (2005) New hybrid count- and geometry-based method for quantification of left ventricular volumes and ejection fraction from ECG-gated SPECT: methodology and validation. J Nucl Cardiol 12(1):55–65

    Article  CAS  PubMed  Google Scholar 

  21. Liu YH (2007) Quantification of nuclear cardiac images: the Yale approach. J Nucl Cardiol 14(4):483–491

    Article  PubMed  Google Scholar 

  22. Smith WH, Kastner RJ, Calnon DA, Segalla D, Beller GA, Watson DD (1997) Quantitative gated SPECT imaging: a counts-based method for display and measurement of regional and global ventricular systolic function. J Nucl Cardiol 5:451–463

    Article  Google Scholar 

  23. Calnon DA, Kastner RJ, Smith WH, Segalla D, Beller GA, Watson DD (1997) Validation of a new counts-based gated single photon emission computed tomography method for quantifying left ventricular systolic function: comparison with equilibrium radionuclide angiography. J Nucl Cardiol 4:464–471

    Article  CAS  PubMed  Google Scholar 

  24. Feng B, Sitek A, Gulberg GT (2001) The prolate spheroidal transform for gated SPECT. IEEE Trans Nucl Sci 48:872–875

    Article  Google Scholar 

  25. Feng B, Sitek A, Gullberg GT (2002) Calculation of the left ventricular ejection fraction without edge detection: application to small hearts. J Nucl Med 43:786–794

    PubMed  Google Scholar 

  26. Khalil MM, Attia A, Ali M, Ziada G, Omar A, Elgazzar A (2009) Echocardiographic validation of the layer of maximum count method in the estimation of the left ventricular EF using gated myocardial perfusion SPECT: correlation with QGS, ECTb, and LVGTF. Nucl Med Commun 30(8):622–628

    Article  PubMed  Google Scholar 

  27. Khalil MM, Elgazzar A, Khalil W, Omar A, Ziada G (2005) Assessment of left ventricular ejection fraction by four different methods using 99mTc tetrofosmin gated SPECT in patients with small hearts: correlation with gated blood pool. Nucl Med Commun 26:885–893

    Article  PubMed  Google Scholar 

  28. Lomsky M, Richter J, Johansson L, El-Ali H, Åström K, Ljungberg M, Edenbrandt L (2005) A new automated method for analysis of gated-SPECT images based on a 3-dimensional heart shaped model. Clin Physiol Funct Imaging 25:234–240

    Article  PubMed  Google Scholar 

  29. Lomsky M, Richter J, Johansson L, Høilund-Carlsen PF, Edenbrandt L (2006) Validation of a new automated method for analysis of gated-SPECT images. Clin Physiol Funct Imaging 26(3):139–145

    Article  PubMed  Google Scholar 

  30. Garcia EV, Van Train K, Maddahi J, Prigent F, Friedman J, Areeda J et al (1985) Quantification of rotational thallium-201 myocardial tomography. J Nucl Med 26:17–26

    CAS  PubMed  Google Scholar 

  31. Ficaro EP, Corbett JR (2004) Advances in quantitative perfusion SPECT imaging. J Nucl Cardiol 11(1):62–70

    Article  PubMed  Google Scholar 

  32. Klein JL, Garcia EV, DePuey EG et al (1990) Reversibility bull’s eye: a new polar bull’s eye map to quantify reversibility of stress-induced SPECT thallium-201 myocardial perfusion defects. J Nucl Med 31:1240–1246

    CAS  PubMed  Google Scholar 

  33. DePuey EG, Roubin GS, DePasquale EE (1989) Sequential multivessel coronary angioplasty assessed by thallium-201 tomography. Cathet Cardiovasc Diagn 18:213–221

    Article  CAS  PubMed  Google Scholar 

  34. Emory Cardiac Toolbox Manual. http://www.Syntermed.com.Accessed on February 2010

  35. Gibbons RJ, Miller TD, Christian T (2000) Infarct size measured by single photon emission computed tomographic imaging with 99mTc-sestamibi: a measure of the efficacy of therapy in acute myocardial infarction. Circulation 101:101–108

    Article  CAS  PubMed  Google Scholar 

  36. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  37. Hachamovitch R, Berman DS, Kiat H, Cohen I, Cabico JA, Friedman J et al (1996) Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation 93:905–914

    Article  CAS  PubMed  Google Scholar 

  38. Hsu CC, Chen YW, Hao CL, Chong JT, Lee CI, Tan HT, Wu MS, Wu JC (2008) Comparison of automated 4D-MSPECT and visual analysis for evaluating myocardial perfusion in coronary artery disease. Kaohsiung J Med Sci 24(9):445–452

    Article  PubMed  Google Scholar 

  39. Germano G (2006) Quantitative analysis in myocardial SPECT imaging. In: Zaidi H (ed) Quantitative analysis in nuclear medicine imaging. Springer, New York

    Google Scholar 

  40. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS (2003) Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation 107:2900–2907

    Article  PubMed  Google Scholar 

  41. Van Train KF, Areeda J, Garcia EV, Cooke CD, Maddahi J, Kiat H et al (1993) Quantitative same-day rest-stress technetium-99m-sestamibi SPECT: definition and validation of stress normal limits and criteria for abnormality. J Nucl Med 34:1494–1502

    PubMed  Google Scholar 

  42. Van Train KF, Garcia EV, Maddahi J, Areeda J, Cooke CD, Kiat H et al (1994) Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med 35:609–618

    PubMed  Google Scholar 

  43. Slomka PJ, Nishina H, Berman DS et al (2005) Automated quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol 12:66–77

    Article  PubMed  Google Scholar 

  44. Faber TL, Modersitzki J, Folks RD, Garcia EV (2005) Detecting changes in serial myocardial perfusion SPECT: a simulation study. J Nucl Cardiol 12:302–310

    Article  PubMed  Google Scholar 

  45. Slomka PJ, Nishina H, Berman DS, Kang X, Friedman JD, Hayes SW, Aladl UE, Germano G (2004) Automatic quantification of myocardial erfusion stress–rest change: a new measure of ischemia. J Nucl Med 45(2):183–191

    PubMed  Google Scholar 

  46. Wolak A, Slomka PJ, Fish MB, Lorenzo S, Acampa W, Berman DS, Germano G (2008) Quantitative myocardial-perfusion SPECT: comparison of three state-of-the-art software packages. J Nucl Cardiol 15(1):27–34, Epub 2007 Oct 29

    Article  PubMed  Google Scholar 

  47. Garcia EV, Santana CA, Faber TL, Cooke CD, Folks RD (2008) Comparison of the diagnostic performance for detection of coronary artery disease (CAD) of their program (QPS) with that of the Emory Cardiac Toolbox (ECTb) for automated quantification of myocardial perfusion. J Nucl Cardiol 15(3)):476

    Article  PubMed  Google Scholar 

  48. Knollmann D, Knebel I, Koch KC, Gebhard M, Krohn T, Buell U, Schaefer WM (2008) Comparison of SSS and SRS calculated from normal databases provided by QPS and 4D-MSPECT manufacturers and from identical institutional normals. Eur J Nucl Med Mol Imaging 35(2):311–318

    Article  PubMed  Google Scholar 

  49. Shaw LJ, Iskandrian AE (2004) Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol 11(2):171–185

    Article  PubMed  Google Scholar 

  50. Hachamovitch R, Berman DS (2005) The use of nuclear cardiology in clinical decision making. Semin Nucl Med 35(1):62–72

    Article  PubMed  Google Scholar 

  51. Achtert AD, King MA, Dahlberg ST, Pretorius PH, LaCroix KJ, Tsui BM (1998) An investigation of the estimation of ejection fractions and cardiac volumes by a quantitative gated SPECT software package in simulated gated SPECT images. J Nucl Cardiol 5:144–152

    Article  CAS  PubMed  Google Scholar 

  52. Xu Y, Kavanagh P, Fish M, Gerlach J, Ramesh A, Lemley M, Hayes S, Berman DS, Germano G, Slomka PJ (2009) Automated quality control for segmentation of myocardial perfusion SPECT. J Nucl Med 50(9):1418–1426

    Article  PubMed  Google Scholar 

  53. Sharir T, Bacher-Stier C, Lewin HC et al (2000) Identification of severe and extensive coronary artery disease by post-exercise regional wall motion abnormalities in Tc-99m sestamibi gated single photon emission computed tomography. Am J Cardiol 86:1171–1175

    Article  CAS  PubMed  Google Scholar 

  54. Sharir T, Berman DS, Waechter PB, Areeda J, Kavanagh PB, Gerlach J, Kang X, Germano G (2001 Nov) Quantitative analysis of regional motion and thickening by gated myocardial perfusion SPECT: normal heterogeneity and criteria for abnormality. J Nucl Med 42(11):1630–1638

    CAS  PubMed  Google Scholar 

  55. Buvat I, Bartlett ML, Kitsiou K et al (1997) A“hybrid” method for measuring myocardial wall thickening from gated PET/SPECT images. J Nucl Med 38:324–329

    CAS  PubMed  Google Scholar 

  56. Berman DS, Germano G (eds) (1999) Clinical gated cardiac SPECT, 1st edn. Futura Publishing Company, Armonk

    Google Scholar 

  57. Hesse B, Lindhardt TB, Acampa W, Anagnostopoulos C, Ballinger J, Bax JJ, Edenbrandt L, Flotats A, Germano G, Stopar TG, Franken P, Kelion A, Kjaer A, Le Guludec D, Ljungberg M, Maenhout AF, Marcassa C, Marving J, McKiddie F, Schaefer WM, Stegger L, Underwood R (2008 Apr) EANM/ESC guidelines for radionuclide imaging of cardiac function. Eur J Nucl Med Mol Imaging 35(4):851–885

    Article  CAS  PubMed  Google Scholar 

  58. Mandinov L, Eberli FR, Seiler C, Hess OM (2000) Diastolic heart failure. Cardiovasc Res 45(4):813–825

    Article  CAS  PubMed  Google Scholar 

  59. Villari B, Betocchi S, Pace L, Piscione F, Russolillo E, Ciarmiello A, Salvatore M, Condorelli M, Chiariello M (1991) Assessment of left ventricular diastolic function: comparison of contrast ventriculography and equilibrium radionuclide angiography. J Nucl Med 32(10):1849–1853

    CAS  PubMed  Google Scholar 

  60. Kumita S, Cho K, Nakajo H, Toba M, Uwamori M, Mizumura S, Kumazaki T, Sano J, Sakai S, Munakata K (2001) Assessment of left ventricular diastolic function with electrocardiography-gated myocardial perfusion SPECT: comparison with multigated equilibrium radionuclide angiography. J Nucl Cardiol 8(5):568–574

    Article  CAS  PubMed  Google Scholar 

  61. Akincioglu C, Berman DS, Nishina H et al (2005) Assessment of diastolic function using 16-frame 99mTc-sestamibi gated myocardial perfusion SPECT: normal values. J Nucl Med 46:1102–1108

    PubMed  Google Scholar 

  62. Sciagrà R, Giaccardi M, Porciani MC et al (2004) Myocardial perfusion imaging using gated SPECT in heart failure patients undergoing cardiac resynchronization therapy. J Nucl Med 45:164–168

    PubMed  Google Scholar 

  63. Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe EL et al (2005) Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 12:687–695

    Article  PubMed  Google Scholar 

  64. Corbett JR, Akinboboye OO, Bacharach SL, Borer JS, Botvinick EH, DePuey EG, Ficaro EP, Hansen CL, Henzlova MJ, Van Kriekinge S (2006) Quality Assurance Committee of the American Society of Nuclear Cardiology. Equilibrium radionuclide angiocardiography. J Nucl Cardiol 13(6):e56–e79

    Article  PubMed  Google Scholar 

  65. Nichols KJ, Van Tosh A, De Bondt P, Bergmann SR, Palestro CJ, Reichek N (2008) Normal limits of gated blood pool SPECT count-based regional cardiac function parameters. Int J Cardiovasc Imaging 24(7):717–725

    Article  PubMed  Google Scholar 

  66. De Bondt P, Nichols KJ, De Winter O, De Sutter J, Vanderheyden M, Akinboboye OO, Dierckx RA (2006) Comparison among tomographic radionuclide ventriculography algorithms for computing left and right ventricular normal limits. J Nucl Cardiol 13(5):675–684

    Article  PubMed  Google Scholar 

  67. Van Kriekinge SD, Berman DS, Germano G (1999) Automatic quantification of left ventricular ejection fraction from gated blood pool SPECT. J Nucl Cardiol 6:498–506

    Article  PubMed  Google Scholar 

  68. Vanhove C, Franken PR, Defrise M, Momen A, Everaert H, Bossuyt A (2001) Automatic determination of left ventricular ejection fraction from gated blood-pool tomography. J Nucl Med 42:401–407

    CAS  PubMed  Google Scholar 

  69. Ficaro EP, Quaife RF, Kritzman JN, Corbett JR (2002) Validation of a new fully automatic algorithm for quantification of gated blood pool SPECT: correlations with planar gated blood pool and perfusion SPECT [abstract]. J Nucl Med 43(suppl):97P

    Google Scholar 

  70. Nichols K, Saouaf R, Ababneh AA et al (2002) Validation of SPECT equilibrium radionuclide angiographic right ventricular parameters by cardiac magnetic resonance imaging. J Nucl Cardiol 9:153–160

    Article  PubMed  Google Scholar 

  71. De Bondt P, Claessens T, Rys B et al (2005) Accuracy of 4 different algorithms for the analysis of tomographic radionuclide ventriculography using a physical, dynamic 4-chamber cardiac phantom. J Nucl Med 46:165–171

    PubMed  Google Scholar 

  72. Nichols K, Humayun N, De Bondt P, Vandenberghe S, Akinboboye OO, Bergmann SR (2004) Model dependence of gated blood pool SPECT ventricular function measurements. J Nucl Cardiol 11(3):282–292

    Article  PubMed  Google Scholar 

  73. Port SC (2004) Tomographic equilibrium radionuclide angiography: has its time arrived? J Nucl Cardiol 11(3):242–244

    Article  PubMed  Google Scholar 

  74. Adachi I, Umeda T, Shimomura H, Suwa M, Komori T, Ogura Y, Utsunomiya K, Kitaura Y, Narabayashi I (2005) Comparative study of quantitative blood pool SPECT imaging with 180 degrees and 360 degrees acquisition orbits on accuracy of cardiac function. J Nucl Cardiol 12(2):186–194

    Article  PubMed  Google Scholar 

  75. Heston TF, Sigg DM (2005) Quantifying transient ischemic dilation using gated SPECT. J Nucl Med 46(12):1990–1996

    PubMed  Google Scholar 

  76. McLaughlin MG, Danias PG (2002) Transient ischemic dilation: a powerful diagnostic and prognostic finding of stress myocardial perfusion imaging. J Nucl Cardiol 9(6):663–667

    Article  PubMed  Google Scholar 

  77. Hambye AS, Vervaet A, Dobbeleir A (2004) Variability of left ventricular ejection fraction and volumes with quantitative gated SPECT: influence of algorithm, pixel size and reconstruction parameters in small and normal-sized hearts. Eur J Nucl Med Mol Imaging 31(12):1606–1613

    Article  PubMed  Google Scholar 

  78. Navare SM, Wackers FJ, Liu YH (2003) Comparison of 16-frame and 8-frame gated SPET imaging for determination of left ventricular volumes and ejection fraction. Eur J Nucl Med Mol Imaging 30(10):1330–1337

    Article  PubMed  Google Scholar 

  79. Vallejo E, Dione DP, Bruni WL, Constable RT, Borek PP, Soares JP, Carr JG, Condos SG, Wackers FJ, Sinusas AJ (2000) Reproducibility and accuracy of gated SPECT for determination of left ventricular volumes and ejection fraction: experimental validation using MRI. J Nucl Med 41:874–882

    CAS  PubMed  Google Scholar 

  80. Vanhove C, Franken PR, Defrise M, Bossuyt A (2003) Comparison of 180 degrees and 360 degrees data acquisition for determination of left ventricular function from gated myocardial perfusion tomography and gated blood pool tomography. Eur J Nucl Med Mol Imaging 30(11):1498–1504

    Article  PubMed  Google Scholar 

  81. Groch MW, Takamiya Y, Groch PJ, Erwin WD (2000 Mar) Quantitative gated myocardial SPECT: effect of collimation on left-ventricular ejection fraction. J Nucl Med Technol 28(1):36–40

    CAS  PubMed  Google Scholar 

  82. Hyun IY M.D., Kwan J, Park KS, Lee WH (2001) Reproducibility of Tl-201 and Tc-99m sestamibi gated myocardial perfusion SPECT measurement of myocardial function. J Nucl Cardiol 8:182–187

    Article  CAS  PubMed  Google Scholar 

  83. Pai M, Yang YJ, Im KC, Hong IK, Yun SC, Kang DH, Song JK, Moon DH (2006) Factors affecting accuracy of ventricular volume and ejection fraction measured by gated Tl-201 myocardial perfusion single photon emission computed tomography. Int J Cardiovasc Imaging 22(5):671–681

    Article  PubMed  Google Scholar 

  84. Manrique A, Hitzel A, Vera P (2004) Impact of photon energy recovery on the assessment of left ventricular volume using myocardial perfusion SPECT. J Nucl Cardiol 11:312–317

    Article  PubMed  Google Scholar 

  85. Ficaro EP, Kritzman JN, Hamilton TW, Mitchell TA, Corbett JR (2000) Effect on attenuation corrected myocardial perfusion SPECT on left ventricular ejection fraction estimates [abstract]. J Nucl Med 41:166

    Google Scholar 

  86. Kumita S, Cho K, Nakajo H, Toba M, Uwamori M, Mizumura S, Kumazaki T, Sano J, Sakai S, Munakata K (2001) Assessment of left ventricular diastolic function with electrocardiography-gated myocardial perfusion SPECT: comparison with multigated equilibrium radionuclide angiography. J Nucl Cardiol 8(5):568–574

    Article  CAS  PubMed  Google Scholar 

  87. Marie PY, Djaballah W, Franken PR, Vanhove C, Muller MA, Boutley H, Poussier S, Olivier P, Karcher G, Bertrand A (2005) OSEM reconstruction, associated with temporal fourier and depth-dependant resolution recovery filtering, enhances results from sestamibi and 201Tl 16-interval gated SPECT. J Nucl Med 46(11):1789–1795

    PubMed  Google Scholar 

  88. Véra P, Manrique A, Pontvianne V et al (1999) Thallium-gated SPECT in patients with major myocardial infarction: effect of filtering and zooming in comparison with equilibrium radionuclide imaging and left ventriculography. J Nucl Med 40:513–521

    PubMed  Google Scholar 

  89. Manrique A, Hitzel A, Gardin I, Dacher JN, Vera P (2003) Impact of Wiener filter in determining the left ventricular volume and ejection fraction using thallium-201 gated SPECT. Nucl Med Commun 24(8):907–914

    CAS  PubMed  Google Scholar 

  90. Gremillet E, Champailler A, Soler C (2005) Fourier temporal interpolation improves electrocardiograph-gated myocardial perfusion SPECT. J Nucl Med 46:1769–1774

    PubMed  Google Scholar 

  91. Nichols K, Dorbala S, DePuey EG, Yao SS, Sharma A, Rozanski A (1999) Influence of arrhythmias on gated SPECT myocardial perfusion and function quantification. J Nucl Med 40:924–934

    CAS  PubMed  Google Scholar 

  92. Kim DW, Park SA, Kim CG (2008) Gating error because of prominent T waves with ECG-gated myocardial SPECT. Clin Nucl Med 33(4):278–279

    Article  PubMed  Google Scholar 

  93. Kasai T, Depuey EG, Shah AA et al (2003) Impact of gating errors with electrocardiography gated myocardial perfusion SPECT. J Nucl Cardiol 10:709–711

    Article  PubMed  Google Scholar 

  94. Khalil MM, Elgazzar A, Khalil W et al (2005) Assessment of left ventricular ejection fraction by four different methods using 99mTc tetrofosmin gated SPECT in patients with small hearts: correlation with gated blood pool. Nucl Med Commun 26:885–893

    Article  PubMed  Google Scholar 

  95. Schaefer WM, Lipke CS, Standke D, Kuhl HP, Nowak B, Kaiser HJ, Koch KC, Buell U (2005) Quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPECT: MRI validation and comparison of the emory cardiac tool box with QGS and 4D-MSPECT. J Nucl Med 46:1256–1263

    PubMed  Google Scholar 

  96. Nakajima K, Higuchi T, Taki J, Kawano M, Tonami N (2001) Accuracy of ventricular volume and ejection fraction measured by gated myocardial SPECT: comparison of 4 software programs. J Nucl Med 42:1571–1578

    CAS  PubMed  Google Scholar 

  97. Khalil MM, Elgazzar A, Khalil W (2006) Evaluation of left ventricular ejection fraction by the quantitative algorithms QGS, ECTb, LMC and LVGTF using gated myocardial perfusion SPECT: investigation of relative accuracy. Nucl Med Commun 27(4):321–332, Erratum in: Nucl Med Commun. 2006 Oct;27(10):831

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy M. Khalil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Khalil, M.M. (2010). Quantitative Cardiac SPECT Imaging. In: Khalil, M. (eds) Basic Sciences of Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85962-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85962-8_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85961-1

  • Online ISBN: 978-3-540-85962-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics