Advertisement

Peer Group Filter for Impulsive Noise Removal in Color Images

  • Bogdan Smolka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

In this paper a new approach to the problem of impulsive noise removal in color images is presented. The proposed method is based on the evaluation of the statistical properties of a sorted sequence of the accumulated distances used for the calculation of the vector median of samples belonging to the filtering window. The statistical analysis is performed using the Fisher’s linear discriminant, which enables the detection of outliers introduced by the noise process. The described filter output switches between the vector median and the original central pixel. In order to increase the filter’s performance, two thresholds are introduced, which enhance the detail preserving abilities of the proposed filtering scheme. The described filtering technique is robust, fast and therefore it can be used in real time denoising applications.

Keywords

Color image processing noise reduction image enhancement 

References

  1. 1.
    Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Applications. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Pitas, I., Tsakalides, P.: Multivariate Ordering in Color Image Processing. IEEE Trans. on Circuits and Systems for Video Technology 1(3), 247–256 (1991)CrossRefGoogle Scholar
  3. 3.
    Astola, J., Haavisto, P., Neuvo, Y.: Vector Median Filters. Proc. of the IEEE 78(4), 678–689 (1990)CrossRefGoogle Scholar
  4. 4.
    Kenney, C., Deng, Y., Manjunath, B.S., Hewer, G.: Peer Group Image Enhancement. IEEE Trans. on Image Processing 10(2), 326–334 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Smolka, B., Chydzinski, A.: Fast Detection and Impulsive Noise Removal in Color Images. Real-Time Imaging 11(5-6), 389–402 (2005)CrossRefGoogle Scholar
  6. 6.
    Ho, J.Y.F.: Peer Region Determination Based Impulsive Noise Detection. In: Proceedings of ICASSP, Hong Kong, vol. 3, pp. 713–716 (2003)Google Scholar
  7. 7.
    Morillas, S., Gregori, V., Peris-Fajarnés, G.: Isolating Impulsive Noise Pixels in Color Images by Peer Group Techniques. Computer Vision and Image Understanding 110(1), 102–116 (2007)CrossRefGoogle Scholar
  8. 8.
    Lukac, R.: Color Image Filtering by Vector Directional Order-Statistics. Pattern Recognition and Image Analysis 12(3), 279–285 (2002)MathSciNetGoogle Scholar
  9. 9.
    Beghdadi, A., Khellaf, K.: A Noise-Filtering Method Using a Local Information Measure. IEEE Trans. on Image Processing 6(6), 879–882 (1997)CrossRefGoogle Scholar
  10. 10.
    Lukac, R.: Vector LUM Smoothers as Impulse Detector for Color Images. In: Proceedings of European Conference on Circuit Theory and Design (ECCTD), Espoo, Finland, vol. 3, pp. 137–140 (2001)Google Scholar
  11. 11.
    Lukac, R., Marchevsky, S.: Adaptive Vector LUM Smoother. In: Proceedings of ICIP, vol. 1, pp. 878–881. Thessaloniki, Greece (2001)Google Scholar
  12. 12.
    Park, J., Kurz, L.: Image Enhancement Using the Modified ICM Method. IEEE Trans. on Image Processing 5(5), 765–771 (1996)CrossRefGoogle Scholar
  13. 13.
    Lee, J.S.: Digital Image Smoothing and the Sigma Filter. Computer Vision, Graphics, and Image Processing 24(2), 255–269 (1983)CrossRefGoogle Scholar
  14. 14.
    Lukac, R., Fischer, V., Motyl, G., Drutarovsky, M.: Adaptive Video Filtering Framework. International Journal of Imaging Systems and Technology 14(6), 223–237 (2004)CrossRefGoogle Scholar
  15. 15.
    Lukac, R.: Adaptive Vector Median Filtering. Pattern Recognition Letters 24(12), 1889–1899 (2003)CrossRefGoogle Scholar
  16. 16.
    Lukac, R.: Adaptive Color Image Filtering Based on Center-Weighted Vector Directional Filters. Multidimensional Systems and Signal Processing 15(2), 169–196 (2004)CrossRefzbMATHGoogle Scholar
  17. 17.
    Smolka, B.: Efficient Modification of the Central Weighted Vector Median Filter. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 166–173. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Smolka, B., Lukac, R., Chydzinski, A., Plataniotis, K.N., Wojciechowski, K.: Fast Adaptive Similarity Based Impulsive Noise Reduction Filter. Real-Time Imaging 9(4), 261–276 (2003)CrossRefGoogle Scholar
  19. 19.
    Smolka, B., Plataniotis, K.N., Chydzinski, A., Szczepanski, M., Venetsanopulos, A.N., Wojciechowski, K.: Self-adaptive Algorithm of Impulsive Noise Reduction in Color Images. Pattern Recognition 35(8), 1771–1784 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    Lukac, R., Smolka, B., Plataniotis, K.N., Venetsanopoulos, A.N.: Generalized Adaptive Vector Sigma Filters. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME), pp. 537–540. Baltimore, USA (2003)Google Scholar
  21. 21.
    Camacho, J., Morillas, S., Latorre, P.: Efficient Impulsive Noise Suppression Based on Statistical Confidence Limits. J. of Imaging Science and Technology 50(5), 427–436 (2006)CrossRefGoogle Scholar
  22. 22.
    Morillas, S., Gregori, V., Peris-Fajarne’s, G., Latorre, P.: A Fast Impulsive Noise Color Image Filter Using Fuzzy Metrics. Real-Time Imaging 11(5-6), 417–428 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Bogdan Smolka
    • 1
  1. 1.Department of Automatic ControlSilesian University of TechnologyGliwicePoland

Personalised recommendations