Advertisement

Joint Freehand Ultrasound and Endoscopic Reconstruction of Brain Tumors

  • Ruben Machucho-Cadena
  • Sergio de la Cruz-Rodríguez
  • Eduardo Bayro-Corrochano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

We present an approach for reconstructing the 3D shape of brain tumors for applications in neurosurgery from 2D ultrasound (US) images. We record simultaneously endoscopic and ultrasonic images, and the pose of the endoscopic camera by an optical tracking system. The 3D pose of the ultrasound probe is determined by tracking the 2D position of the ultrasound probe in successive endoscopic images by image processing techniques (Hough Transform, Particle Filtering) and finally the 3D position is computed by the known camera geometry and multiple view geometry using conformal geometric algebra. When the 3D US probe position is calculated, we compound multiple 2D US images into a 3D volume.

Keywords

endo-neuro-sonography 3D reconstruction brain tumor segmentation 

References

  1. 1.
    Bayro Corrochano, E.: Geometric Computing for Perception Action Systems: Concepts, Algorithms, and Scientific Applications. Springer, Heidelberg (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Castleman, K.R.: Digital Image Processing. Prentice Hall, Englewood Cliffs (1996)Google Scholar
  3. 3.
    Resch, K.D.M.: Transendoscopic Ultrasound for Neurosurgery. Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Hummel, J.B., et al.: Design and Application of an Assessment Protocol for Electromagnetic Tracking Systems. Medical Physics 32, 2371–2379 (2005)CrossRefGoogle Scholar
  6. 6.
    Isard, M., Blake, A.: Condensation — Conditional Density Propagation for Visual Tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998)CrossRefGoogle Scholar
  7. 7.
    Nummiaro, K., Koller-Meier, E., Van Gool, L.: An Adaptive Color-based Particle Filter. Image Vis. Comput. 21(1), 99–110 (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Unsgaard, G., et al.: Intra-operative 3D Ultrasound in Neurosurgery. Acta Neurochir(Wien) 148(3), 235–253 (2006)CrossRefGoogle Scholar
  9. 9.
    Zhang, Z.: A Flexible New Technique for Camera Calibration. J. IEEE Transactions on Pattern Analysis and Machine Inteligence 22(11), 1330–1334 (2000)CrossRefGoogle Scholar
  10. 10.
    Barber, C., et al.: The Quickhull algorithm for convex hulls. ACM Trans. on Mathematical Software 22(4), 469–483 (1996), http://www.qhull.org MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bayro Corrochano, E., Daniilidis, K.: The Dual Quaternion Approach to Hand-Eye Calibration. In: International Conference on Pattern Recognition (ICPR 1996), Vienna, Austria, vol. 1, pp. 318–322. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar
  12. 12.
    Feuerstein, M., et al.: Magneto-Optic Tracking of a Flexible Laparoscopic Ultrasound Transducer for Laparoscope Augmentation. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 458–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ruben Machucho-Cadena
    • 1
  • Sergio de la Cruz-Rodríguez
    • 2
  • Eduardo Bayro-Corrochano
    • 1
  1. 1.CINVESTAV, Unidad Guadalajara, Departamento de Ingeniería Eléctrica y Ciencias de la ComputaciónJaliscoMéxico
  2. 2.Instituto Superior Politécnico “José A. Echeverría”HavanaCuba

Personalised recommendations