Comparison of Pixel and Subpixel Retinal Vessel Tree Segmentation Using a Deformable Contour Model

  • L. Espona
  • M. J. Carreira
  • M. G. Penedo
  • M. Ortega
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

This paper presents a comparison of pixel and subpixel performance of the snake-based system designed to detect the vessel tree in eye fundus images. The automatic analysis of the retinal vessel tree facilitates the computation of the arteriovenous index, which is essential for the diagnosis and evolution of several eye diseases. A high accuracy is required to correctly assess the clinicians and it is insufficient when working at a pixel level. The developed model is inspired in the classical snake but incorporating domain specific knowledge and profits from the automatic localization of the optic disc and from the extraction of vascular tree centerlines previously developed in our research group [1]. The efficiency and accuracy of the detection of arteriovenous structures are evaluated using the publicly available DRIVE database and an equivalent system configuration for pixel and subpixel results. Results demonstrate that, although more time consuming, subpixel retinal vessel extraction is much more reliable, keeping relatively low values of computing time.

Keywords

snakes segmentation retinal vessel tree eye fundus image subpixel 

References

  1. 1.
    Caderno, I.G., Penedo, M.G., Mariño, C., Carreira, M.J., Gómez-Ulla, F., González, F.: Automatic Extraction of the Retina AV Index. In: Campilho, A.C., Kamel, M. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 132–140. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Niemeijer, M., van Ginneken, B., Staal, J., Suttorp-Schulten, M.S.A., Abràmoff, M.D.: Automatic Detection of Red Lesions in Digital Color Fundus Photographs. IEEE Transactions on Medical Imaging 24(5), 584–592 (2005)CrossRefGoogle Scholar
  3. 3.
    Aurell, E.: A Note of Signs in the Fundus Oculi Hypertension Conventional Assessment and Significance. Bull. World Health Organ. 34, 955–960 (1967)Google Scholar
  4. 4.
    Niemeijer, M., Staal, J., van Ginneken, B., Loog, M., Abràmoff, M.D.: Comparative Study of Retinal Vessel Segmentation Methods on a new Publicy Avaliable Database. In: Proceedings of the SPIE. Medical Imaging 2004: Image Processing, vol. 5370, pp. 648–656 (2004)Google Scholar
  5. 5.
    Mendoça, A.M., Campilho, A.: Segmentation of Retinal Blood Vessels by Combining the Detection of Centerlines and Morphological Reconstruction. IEEE Transactions on Medical Imaging 25(9), 1200–1213 (2006)CrossRefGoogle Scholar
  6. 6.
    Soares, J.V.B., Leandro, J.J.G., Cesar Jr., R.M.C., Jelinek, H.F., Cree, M.J.: Retinal Vessel Segmentation Using the 2-D Gabor Wavelet and Supervised Classification. IEEE Transactions on Medical Imaging 25(9), 1214–1222 (2006)CrossRefGoogle Scholar
  7. 7.
    Toledo, R., Orriols, X., Binefa, X., Redeva, P., Vitriá, J., Villanueva, J.J.: Tracking elongated structures using statistical snakes. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, vol. 1(1), pp. 157–162 (2000)Google Scholar
  8. 8.
    Phaml, T.D., Tran, D.T., Brown, M., Lee Kennedy, R.: Image Segmentation of Retinal Vessels by Fuzzy Models. In: Proceedings of International Symposium on Intelligent Signal Processing and Communication Systems (2005)Google Scholar
  9. 9.
    Staal, J.J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging 23, 501–509 (2004)CrossRefGoogle Scholar
  10. 10.
    Espona, L., Carreira, M.J., Ortega, M., Penedo, M.G.: A Snake for Retinal Vessel Segmentation. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 178–185. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Ortega, M., Mariño, C., Penedo, M.G., Blanco, M., González, F.: Personal Authentication based on Feature Extraction and Optic Nerve Location in Digital Retinal Images. Wseas Transactions on Computers 5(6), 1169–1176 (2006)Google Scholar
  12. 12.
    Kass, M., Witkin, A., Terzopoulos, D.: Active Contour Models. International Journal of Computer Vision 1(2), 321–331 (1998)Google Scholar
  13. 13.
    Blanco, M., Penedo, M.G., Barreira, N., Penas, M., Carreira, M.J.: Localization and Extraction of the Optic Disc using the Fuzzy Circular Hough Transform. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 713–721. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Canny, J.: A Computational Approach to Edge-Detection. IEEE Transactions on Pattern Analysis and Machine Inteligence 8(6), 679–689 (1986)CrossRefGoogle Scholar
  15. 15.
    Niemeijer, van Ginneken, B.: Image Sciences Institute.DRIVE: Results Browser (2002), http://www.isi.uu.nl/Research/Databases/DRIVE/browser.php

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • L. Espona
    • 1
  • M. J. Carreira
    • 1
  • M. G. Penedo
    • 2
  • M. Ortega
    • 2
  1. 1.Computer Vision Group. Electronics and Computer Science DptUniversity of Santiago de CompostelaSpain
  2. 2.VARPA Group. Computing DptUniversity of A CoruñaSpain

Personalised recommendations