Advertisement

Perceptually Motivated Shape Evolution with Shape-Preserving Property

  • Sergej Lewin
  • Xiaoyi Jiang
  • Achim Clausing
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

In this paper we introduce a novel concept of shape evolution. It is perceptually motivated and takes the local shape symmetry into account. In particular, during the new shape evolution the shape parts in accordance with the human perception are removed step by step and the coarse parts remain geometrically unchanged during removing the fine parts. This shape-preserving property cannot be achieved by the popular Gaussian smoothing (evolution based on geometric heat flow) and related variants. Experimental results demonstrate the behavior and power of this new shape evolution scheme.

Keywords

Shape evolution Shape perception 

References

  1. 1.
    Bierderman, I.: Recognition-by-Components: A Theory of Human Image Understanding. Psychological Review 94(2), 115–147 (1987)CrossRefGoogle Scholar
  2. 2.
    Blum, H.: A transformation for extracting new descriptors of form. In: Whaten-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form., pp. 362–380. MIT Press, Cambridge (1967)Google Scholar
  3. 3.
    Hoffman, D.D., Richards, W.: Parts of Recognition. Technical Report AIM-732 (1983)Google Scholar
  4. 4.
    Jiang, X., Lewin, S.: An Approach to Perceptual Shape Matching. In: Bres, S., Laurini, R. (eds.) VISUAL 2005. LNCS, vol. 3736, pp. 109–120. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Kimia, B., Tannebaum, A., Zucker, S.: Shapes, shocks, and deformations I: the components of two-dimensional shape and the reaction-diffusion space. IJCV 15, 189–224 (1995)CrossRefGoogle Scholar
  6. 6.
    Kimmel, R.: Numerical Geometry of Images: Theory, Algorithms and Applications. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Latecki, L.J., Lakämper, R.: Convexity rule for shape decomposition based on discrete contour evolution. Computer Vision and Image Understanding 73, 441–454 (1999)CrossRefGoogle Scholar
  8. 8.
    Lewin, S., Jiang, X., Clausing, A.: Shape Evolution Driven by a Perceptually Motivated Measure. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M., Ju, T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) ISVC 2007, Part II. LNCS, vol. 4842, pp. 214–223. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Mokhtarian, F., Bober, M.: Curvature Scale Space Representation: Theory, Applications & MPEG-7 Standardisation. Kluwer Academic, Dordrecht (2003)CrossRefzbMATHGoogle Scholar
  10. 10.
    Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    Siddiqi, K., Kimia, B.B.: Parts of Visual Form: Computational Aspects. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(3), 239–251 (1995)CrossRefGoogle Scholar
  12. 12.
    Singh, M., Seyranian, G., Hoffman, D.: Parsing silhouettes: The short-cut rule. Perception and Psychophysics 61, 636–660 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sergej Lewin
    • 1
  • Xiaoyi Jiang
    • 1
  • Achim Clausing
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of MünsterMünsterGermany

Personalised recommendations