Analysis and Prediction of Air Quality Data with the Gamma Classifier

  • Cornelio Yáñez-Márquez
  • Itzamá López-Yáñez
  • Guadalupe de la Luz Sáenz Morales
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)


In later years, different environmental phenomena have attracted the attention of artificial intelligence and machine learning researchers. In particular, several research groups have applied genetic algorithms and artificial neural networks to the analysis of data related to atmospheric and environmental sciences. In the current work, the results of applying the Gamma classifier to the analysis and prediction of air quality data related to the Mexico City Air Quality Metropolitan Index (IMECA in Spanish) are presented.


Air quality forecast gamma classifier 


  1. 1.
    Toepfer, K., et al.: Aliados Naturales: El Programa de las Naciones Unidas para el Medio Ambiente y la sociedad civil (in Spanish). UNEP-United Nations Foundation (2004)Google Scholar
  2. 2.
    Hisas, L., et al.: A Guide to the Global Environmental Facility (GEF) for NGOs. UNEP-United Nations Foundation (2005)Google Scholar
  3. 3.
    United Nations: Rio Declaration on Environment and Development (1992)Google Scholar
  4. 4.
    United Nations: Kyoto Protocol to The United Nations Framework Convention on Climate Change (1997)Google Scholar
  5. 5.
    Secretaría de Comercio y Fomento Industrial: Determiaci ón de Neblina de Ácido Fosfórico en los Gases que Fluyen por un Conducto (in Spanish). Mexican Norm NMX-AA-090-1986. Mexico (1986)Google Scholar
  6. 6.
    Web del Departamento de Medio Ambiente y Vivienda de la Generalitat de Cataluña (in Spanish) (2007),
  7. 7.
    Sucar, L.E., Pérez-Brito, J., Ruiz-Suárez, J.C., Morales, E.: Learning Structure from Data and Its Application to Ozone Prediction. Applied Intelligence 7(4), 327–338 (1997)CrossRefGoogle Scholar
  8. 8.
    Dutot, A., Rynkiewicz, J., Steiner, F.E., Rude, J.: A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions. Environmental Modelling and Software 22(9), 1261–1269 (2007)CrossRefGoogle Scholar
  9. 9.
    Salazar-Ruiz, E., et al.: Development and comparative analysis of tropospheric ozone prediction models using linear and artificial intelligence-based models in Mexicali, Baja California (Mexico) and Calexico, California (US). Environmental Modelling and Software 23(8), 1056–1069 (2008)CrossRefGoogle Scholar
  10. 10.
    Wang, W., Men, C., Lu, W.: Online prediction model based on support vector machine. Neurocomputing 71(4-6), 550–558 (2008)CrossRefGoogle Scholar
  11. 11.
    Yáñez, L., Itzamá: Clasificador Automá tico de Alto Desempeño (in Spanish). M.Sc. Thesis. National Polytechnics Institute, Computers Research Center, Mexico (2007)Google Scholar
  12. 12.
    Sistema de Monitoreo Atmosférico de la Ciudad de Mé xico: IMECA (in Spanish) (2007),
  13. 13.
    Norma Ambiental para el Distrito Federal (in Spanish). Gaceta Oficial del Distrito Federal, XVI Epoch (2006)Google Scholar
  14. 14.
    Gokhale, S., Raokhande, N.: Performance evaluation of air quality models for predicting PM10 and PM2.5 concentrations at urban traffic intersection during winter period. Science of the Total Environment 394(1), 9–24 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Cornelio Yáñez-Márquez
    • 1
  • Itzamá López-Yáñez
    • 1
  • Guadalupe de la Luz Sáenz Morales
    • 1
  1. 1.IPN Centro de Investigación en Computación Juan de Dios Bátiz s/n esq. Miguel Othón de MendizábalUnidad Profesional Adolfo López MateosMéxico, D.F.México

Personalised recommendations