Advertisement

A Dialog Management Methodology Based on Neural Networks and Its Application to Different Domains

  • D. Griol
  • L. F. Hurtado
  • E. Segarra
  • E. Sanchis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

In this paper, we present a statistical approach for dialog management within the framework of two different domains. The dialog model, that is automatically learned from a data corpus, is based on the use of a classification process to generate the next system answer. A neural network classifier is used for the selection process. This methodology has been applied in a spoken dialog system that provides railway information. The definition of an extended methodology that takes into account new system functionalities and its application for developing a dialog system for booking sports facilities is also described.

Keywords

Neural networks Dialog systems Dialog management Statistical methodologies 

References

  1. 1.
    Young, S.: The Statistical Approach to the Design of Spoken Dialogue Systems. Technical report, CUED/F-INFENG/TR.433, Cambridge University Engineering Department (2002)Google Scholar
  2. 2.
    Segarra, E., Sanchis, E., Galiano, M., García, F., Hurtado, L.: Extracting Semantic Information Through Automatic Learning Techniques. International Journal on Pattern Recognition and Artificial Intelligence 16(3), 301–307 (2002)CrossRefGoogle Scholar
  3. 3.
    He, Y., Young, S.: A data-driven spoken language understanding system. In: Proc. of ASRU 2003, pp. 583–588 (2003)Google Scholar
  4. 4.
    Esteve, Y., Raymond, C., Bechet, F., Mori, R.D.: Conceptual Decoding for Spoken Dialog systems. In: Proc. of EuroSpeech 2003, pp. 617–620 (2003)Google Scholar
  5. 5.
    Williams, J., Young, S.: Partially Observable Markov Decision Processes for Spoken Dialog Systems. Computer Speech and Language 21(2), 393–422 (2007)CrossRefGoogle Scholar
  6. 6.
    Lemon, O., Georgila, K., Henderson, J.: Evaluating Effectiveness and Portability of Reinforcement Learned Dialogue Strategies with real users: the TALK Town-Info. Evaluation. In: Proc. of SLT 2006, Aruba (2006)Google Scholar
  7. 7.
    Torres, F., Sanchis, E., Segarra, E.: Development of a stochastic dialog manager driven by semantics. In: Proc. EuroSpeech 2003 (1), 605–608 (2003)Google Scholar
  8. 8.
    Hurtado, L., Griol, D., Segarra, E., Sanchis, E.: A Stochastic Approach for Dialog Management based on Neural Networks. In: Proc. of InterSpeech 2006, Pittsburgh (2006)Google Scholar
  9. 9.
    Benedí, J., Lleida, E., Varona, A., Castro, M., Galiano, I., Justo, R., López, I., Miguel, A.: Design and acquisition of a telephone spontaneous speech dialogue corpus in Spanish: Dihana. In: Proc. of LREC 2006, Genove (2006)Google Scholar
  10. 10.
    Lleida, E., Segarra, E., Torres, M., Macías-Guarasa, J.: EDECÁN: sistEmade Diálogo multidominio con adaptación al contExto aCústico y de AplicacióN. In: Proc. IV Jornadas en Tecnologia del Habla, Zaragoza, pp. 291–296 (2006)Google Scholar
  11. 11.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: PDP: Computational models of cognition and perception, vol. I, pp. 319–362. MIT Press, Cambridge (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • D. Griol
    • 1
  • L. F. Hurtado
    • 1
  • E. Segarra
    • 1
  • E. Sanchis
    • 1
  1. 1.Departament de Sistemes Informàtics i Computació (DSIC)Universitat Politècnica de València (UPV)ValènciaSpain

Personalised recommendations