A Matrix-Based Secret Sharing Scheme for Images

  • A. Martín del Rey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

In this paper, we propose a novel secret sharing scheme for digital images based on the use of binary matrices. It is shown that the scheme presented is ideal and perfect. Also, it exhibits good statistical properties.

Keywords

Secret sharing Image processing Binay matrix 

References

  1. 1.
    Álvarez, G., Hernández, L., Martín, A.: A New Secret Sharing Scheme for Images based on Additive 2-Dimensional Cellular Automata. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 411–418. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Alvarez, G., Hernández Encinas, A., Hernández Encinas, L., Martín del Rey, A.: A secure scheme to share secret color images. Comput. Phys. Comm. 173, 9–16 (2005)CrossRefMATHGoogle Scholar
  3. 3.
    Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS Conf. Proc., vol. 48, pp. 313–317 (1979)Google Scholar
  4. 4.
    Chang, C., Hwang, R.: Sharing secret images using shadow codebooks. Inform. Sciences 111, 335–345 (1998)CrossRefGoogle Scholar
  5. 5.
    Chen, Y., Chan, Y., Huang, C., Tsai, M., Chu, Y.: A multiple-level visual secret-sharing scheme without image size expansion. Inform. Sciences 177, 4696–4710 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cimato, S., De Prisco, R., De Santis, A.: Colored visual cryptography without color darkening. Theor. Comput. Sci. 374, 261–276 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Feng, J., Wu, H., Tsai, C., Chu, Y.: A new multi-secret image sharing scheme using Lagrange’s interpolation. J. Syst. Software 76, 327–329 (2005)CrossRefGoogle Scholar
  8. 8.
    Fredkin, E.: Digital mechanics. An informal process based on reversible universal cellular automata. Physica D 45, 254–270 (1990)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Lin, S., Lin, J.: VCPSS: A two-in-one two-decoding-options image sharing method combining visual cryptography (VC) and polynomial-style sharing (PSS) approaches. Pattern Recogn. 40, 3652–3666 (2007)CrossRefMATHGoogle Scholar
  10. 10.
    Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  11. 11.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)MATHGoogle Scholar
  12. 12.
    De Santis, A., Masucci, B.: New results on non-perfect sharing of multiple secrets. J. Syst. Software 80, 216–223 (2007)CrossRefGoogle Scholar
  13. 13.
    Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Shyu, S.: Efficient visual secret sharing scheme for color images. Pattern Recogn. 39, 866–880 (2006)CrossRefMATHGoogle Scholar
  15. 15.
    Thien, C., Lin, J.: Secret image sharing. Compup. Graph. 26, 765–770 (2002)CrossRefGoogle Scholar
  16. 16.
    Toffoli, T., Margolus, N.: Cellular automata machines. The MIT Press, Cambridge (1987)MATHGoogle Scholar
  17. 17.
    Tsai, D., Chen, T., Horng, G.: A cheating prevention scheme for binary visual cryptography with homogeneous secret images. Pattern Recogn. 40, 2356–2366 (2007)CrossRefMATHGoogle Scholar
  18. 18.
    von Neumann, J.: Theory of self-reproducing automata. Burks, A.W. (ed.). University of Illinois Press, Illinois, 1966.Google Scholar
  19. 19.
    Wang, R., Su, C.: Secret image sharing with smaller shadow images. Pattern Recogn. Lett. 27, 551–555 (2006)CrossRefGoogle Scholar
  20. 20.
    Wolfram, S.: A new kind of science. Wolfram Media. Champaign, Illinois (2002)MATHGoogle Scholar
  21. 21.
    Wu, Y., Thien, L., Lin, J.: Sharing and hiding secret images with size constrain. Pattern Recogn. 37, 1377–1385 (2004)CrossRefGoogle Scholar
  22. 22.
    Yang, C., Chen, T.: Reduce shadow size in aspect ratio invariant visual secret sharing schemes using a square block-wise operation. Pattern Recogn. 39, 1300–1314 (2006)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • A. Martín del Rey
    • 1
  1. 1.GICSIMAD, Department of Applied Mathematics E.P.S. de ÁvilaUniversidad de SalamancaÁvilaSpain

Personalised recommendations