Applying SIFT Descriptors to Stellar Image Matching

  • Javier Ruiz-del-Solar
  • Patricio Loncomilla
  • Pablo Zorzi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)


Stellar image matching allows to verify if a given pair of images belongs to the same stellar object/area, or knowing that they correspond to the same sky area, to verify if there are some changes between them due to an stellar event (supernova event, changes in the object position, etc). Some applications are stellar photometry, telescope tracking and pointing, robot telescopes, and sky monitoring. However, the matching of stellar images is a hard problem because normally the images are taken using different telescopes, image sensors and settings, as well as from different places, which produces variability in the image’s resolution, orientation, and field of view. In this context, the aim of this paper is to propose a robust SIFT-based wide baseline matching technique for stellar images. The proposed technique was evaluated in a new database composed by 100 pairs of galaxies, nebulas and star clusters images, achieving a true positive rate of 87% with a false positive rate of 1.7%.


Matching techniques SIFT descriptors Stellar Image Matching 


  1. 1.
    Lowe, D.: Object Recognition from Local Scale-invariant Features. In: 7th IEEE International Conference on Computer Vision, pp. 1150–1157. IEEE Computer Society Press, California (1999)Google Scholar
  2. 2.
    Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  3. 3.
    Scovanner, P., Ali, S., Shah, M.: A 3-dimensional Sift Descriptor and its Application to Action Recognition. In: 15th International Conference on Multimedia, pp. 357–360. ACM Press, New York (2007)CrossRefGoogle Scholar
  4. 4.
    Se, S., Lowe, D.G., Little, J.: Vision-based Mobile Robot Localization and Mapping Using Scale-invariant Features. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2051–2058. IEEE Press, New Jersey (2001)Google Scholar
  5. 5.
    Jo, Y.-G., Lee, J.-Y., Kang, H.: Segmentation Tracking and Recognition Based on Foreground-Background Absolute Features, Simplified SIFT, and Particle Filters. In: IEEE Congress on Evolutionary Computation, pp. 1279–1284. IEEE Press, New York (2006)Google Scholar
  6. 6.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: 4th Alvey Vision Conference, pp. 147–151. Manchester, UK (1998)Google Scholar
  7. 7.
    Lowe, D.: Local feature view clustering for 3D object recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 682–688. IEEE Press, Los Alamitos (2001)Google Scholar
  8. 8.
    Ferrari, V., Tuytelaars, T., Van Gool, L.: Simultaneous Object Recognition and Segmentation by Image Exploration. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 40–54. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Mikolajczyk, K., Schmid, C.: Scale & Affine Invariant Interest Point Detectors. International Journal of Computer Vision 60, 63–96 (2004)CrossRefGoogle Scholar
  10. 10.
    Loncomilla, P., Ruiz-del-Solar, J.: A Fast Probabilistic Model for Hypothesis Rejection in SIFT-Based Object Recognition. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 696–705. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Loncomilla, P., Ruiz-del-Solar, J.: Gaze Direction Determination of Opponents and Teammates in Robot Soccer. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 230–242. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Loncomilla, P., Ruiz-del-Solar, J.: Improving SIFT-based Object Recognition for Robot Applications. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 1084–1092. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Ruiz-Del-Solar, J., Loncomilla, P., Devia, C.: A New Approach for Fingerprint Verification based on Wide Baseline Matching using Local Interest Points and Descriptors. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS, vol. 4872, pp. 586–599. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Schmid, C., Mohr, R.: Local grayvalue invariants for image retrieval. In: IEEE Transactions Pattern Analysis and Machine Intelligence, pp. 530–534. IEEE Computer Society Press, California (1997)Google Scholar
  15. 15.
    Astrometry Engine Project Website,

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Javier Ruiz-del-Solar
    • 1
  • Patricio Loncomilla
    • 1
  • Pablo Zorzi
    • 1
  1. 1.Department of Electrical EngineeringUniversidad de ChileChile

Personalised recommendations