Advertisement

Recursive Shape and Pose Determination Using Deformable Model

  • Kevin Bailly
  • Maurice Milgram
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

This paper adresses the problem of estimating shape and pose parameters of a 3D-non-rigid model from a single image. We introduce a new fast and robust method to minimize reprojection error between 3D model and feature image points. For this purpose, a recursive process is proposed. First, pose is roughly approximated using a rigid model. This permits to analytically determine shape parameters. Pose and shape are updated in an iterative way. Tests carried out on both synthetic and real data using the CANDIDE-3 parameterized mesh[1] are very promising.

Keywords

3D face modeling non-rigid model POSIT least square estimation single image 

References

  1. 1.
    Ahlberg, J.: Candide-3 – an Updated Parameterized Face. Technical report, Linköping University (2001)Google Scholar
  2. 2.
    Tomasi, C., Kanade, T.: Shape and Motion from Image Streams under Orthography: a Factorization Method. J. Comp. Vis. 9, 137–154 (1992)CrossRefGoogle Scholar
  3. 3.
    Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-Rigid 3d Shape from Image Streams. Technical report, New York University (1999)Google Scholar
  4. 4.
    Bue, A.D., Smeraldi, F., Agapito, L.: Non-Rigid Structure from Motion using non-Parametric Tracking and Non-Linear Optimization. In: Conference on Computer Vision and Pattern Recognition Workshop (2004)Google Scholar
  5. 5.
    Koo, H.S., Lam, K.M.: Recovering the 3d Shape and Poses of Face Images based on the Similarity Transform. J. Pat. Reco. Lett. 29, 712–723 (2008)CrossRefGoogle Scholar
  6. 6.
    Chaumont, M., Beaumesnil, B.: Robust and Real-Time 3d-Face Model Extraction. In: IEEE International Conference on Image Processing, pp. 461–464 (2005)Google Scholar
  7. 7.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active Shape Models. Their Training and Application. J. Comp. Vis. and Im. Under. 61, 38–59 (1995)CrossRefGoogle Scholar
  8. 8.
    Dementhon, D.F., Davis, L.S.: Model-Based Object Pose in 25 Lines of Code. J. Comp. Vis. 15, 123–141 (1995)CrossRefGoogle Scholar
  9. 9.
    Cheong, L.F., Peh, C.H.: Depth Distortion under Calibration Uncertainty. J. Comp. Vis. and Im. Under. 93, 221–244 (2004)CrossRefGoogle Scholar
  10. 10.
    Gourier, N., Hall, D., Crowley, J.L.: Estimating Face Orientation From Robust Detection of Salient Facial features. In: International Workshop on Visual Observation of Deictic Gestures (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Kevin Bailly
    • 1
    • 2
  • Maurice Milgram
    • 1
    • 2
  1. 1.UPMC Univ Paris 06ParisFrance
  2. 2.CNRS, FRE 2507, ISIR, Institut des Systèmes Intelligents et de RobotiqueParisFrance

Personalised recommendations