Delineating Homology Generators in Graph Pyramids

  • Mabel Iglesias
  • Adrian Ion
  • Walter G. Kropatsch
  • Edel B. García
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

Computation of homology generators using a graph pyramid can significantly increase performance, compared to the classical methods. First results in 2D exist and show the advantages of the method. Generators are computed on the upper level of a graph pyramid. Top-level graphs may contain self loops and multiple edges, as a side product of the contraction process. Using straight lines to draw these edges would not show the full information: self loops disappear, parallel edges collapse. This paper presents a novel algorithm for correctly visualizing graph pyramids, including multiple edges and self loops which preserves the geometry and the topology of the original image. New insights about the top-down delineation of homology generators in graph pyramids are given.

Keywords

graphs pyramids pyramid drawing homology generators 

References

  1. 1.
    Gonzalez, R., Real, P.: On the cohomology of 3d digital images. Discrete Appl. Math. 147(2-3), 245–263 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Boxer, L.: Digital products, wedges, and covering spaces. J. Math. Imaging Vis. 25(2), 159–171 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Peltier, S., Ion, A., Haxhimusa, Y., Kropatsch, W.G., Damiand, G.: Computing homology group generators of images using irregular graph pyramids. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 283–294. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Kerren, A.: Interactive visualization of graph pyramids. In: Graph Drawing, IBFI, Schloss Dagstuhl, Germany (2006)Google Scholar
  5. 5.
    Burge, M., Kropatsch, W.G.: A minimal line property preserving representation of line images. Computing 62(4), 355–368 (1999)CrossRefMATHGoogle Scholar
  6. 6.
    Duncan, C.A., Kobourov, S.G., Sander, G.: Graph drawing contest report. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 395–400. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Kropatsch, W.G.: Building irregular pyramids by dual graph contraction. IEE-Proc. Vision, Image and Signal Processing 142(6), 366–374 (1995)CrossRefGoogle Scholar
  8. 8.
    Munkres, J.R.: Elements of algebraic topology. Perseus Books (1984)Google Scholar
  9. 9.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  10. 10.
    Zomorodian, A.: Topology for computing. Cambridge University Press, Cambridge (2005)CrossRefMATHGoogle Scholar
  11. 11.
    Kaczynski, T., Mrozek, M., Slusarek, M.: Homology computation by reduction of chain complexes. Computers and Math. Appl. 34, 59–70 (1998)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Damiand, G., Peltier, S., Fuchs, L.: Computing homology for surfaces with generalized maps: Application to 3d images. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 235–244. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mabel Iglesias
    • 1
    • 2
  • Adrian Ion
    • 2
  • Walter G. Kropatsch
    • 2
  • Edel B. García
    • 1
  1. 1.Pattern Recognition DepartmentAdvanced Technologies Application CenterHavanaCuba
  2. 2.Pattern Recognition and Image Processing Group, Faculty of InformaticsVienna University of TechnologyAustria

Personalised recommendations