Multiclass Adaboost and Coupled Classifiers for Object Detection

  • Rodrigo Verschae
  • Javier Ruiz-del-Solar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)


Building robust and fast multiclass object detection systems is a important goal of computer vision. In the present paper we extend the well-known work of Viola and Jones on boosted cascade classifiers to the multiclass case with the goal of building multiclass and multiview object detectors. We propose to use nested cascades of multiclass boosted classifiers and we introduce the concept of coupled components in multiclass classifiers. We evaluate the system by building several multiview face detectors, each one built to detect a different number of classes. Thus, we present results showing how well the system scales. Promising results are obtained in the BioID database, showing the potentiality of the proposed methods for building object detectors.


Multiclass Adaboost Coupled Components Object Detection 


  1. 1.
    Bourdev, L., Brandt, J.: Robust object detection via soft cascade. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 236–243 (2005)Google Scholar
  2. 2.
    Huang, C., Ai, H., Li, Y., Lao, S.: High-performance rotation invariant multiview face detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 29(4), 671–686 (2007)CrossRefGoogle Scholar
  3. 3.
    Jones, M., Viola, P.: Fast multi-view face detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2003)Google Scholar
  4. 4.
    Li, S.Z., Zhang, Z.: Floatboost learning and statistical face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1112–1123 (2004)CrossRefGoogle Scholar
  5. 5.
    Schapire, R., Singer, Y.: Improved boosting using confidence-rated predictions. Machine Learning 37(3), 297–336 (1999)CrossRefzbMATHGoogle Scholar
  6. 6.
    Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass and multiview object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(5), 854–869 (2007)CrossRefGoogle Scholar
  7. 7.
    Verschae, R., Ruiz-del-Solar, J., Correa, M.: A unified learning framework for object detection and classification using nested cascades of boosted classifiers. Machine Vision Applications 19(2), 85–103 (2008)CrossRefGoogle Scholar
  8. 8.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 511–518 (2001)Google Scholar
  9. 9.
    Wu, B., Ai, H., Huang, C., Lao, S.: Fast rotation invariant multi-view face detection based on real adaboost. In: Proc. of the 6th Int. Conf. on Face and Gesture Recognition, pp. 79–84 (2004)Google Scholar
  10. 10.
    Wu, B., Nevatia, R.: Cluster boosted tree classifier for multi-view, multi-pose object detection. In: Proc. of the Eleventh IEEE Int. Conf. on Computer Vision (ICCV 2007) (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rodrigo Verschae
    • 1
  • Javier Ruiz-del-Solar
    • 1
  1. 1.Department of Electrical EngineeringUniversidad de ChileChile

Personalised recommendations