Advertisement

A New Combination of Local Appearance Based Methods for Face Recognition under Varying Lighting Conditions

  • Heydi Méndez-Vázquez
  • Edel García-Reyes
  • Yadira Condes-Molleda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

This paper presents a different way of using DCT and LBP to com-pensate for illumination variations in face recognition with only one sample image per person. The sensitiveness to lighting variations of the LBP and DCT methods was investigated and from it emerged the proposed new method, consisting in discarding low-frequency DCT coefficients in the logarithm domain in a local way as a preprocessing step, and applying LBP method to represent the facial features. Experimental results on the Yale B database show that the proposal improves the performance of the original methods and their existing extensions.

Keywords

local appearance based methods face recognition LBP DCT  illumination invariants 

References

  1. 1.
    Li, S.Z., Jain, A.K.: Handbook of Face Recognition. Springer, New York (2005)zbMATHGoogle Scholar
  2. 2.
    Phillips, P.J., Scruggs, W.T., O’Toole, A.J., Flynn, P.J., Bowyer, K.W., Schott, C.L., Sharpe, M.: FRVT 2006 and ICE 2006 Large-Scale Results. In: National Institute of Standards and Technology Gaithersburg, MD 20899 (2007)Google Scholar
  3. 3.
    Tan, X.Y., Chen, S.C., Zhou, Z.H., Zhang, F.: Face recognition from a single image per person: A survey. Pattern Recognition 39(9), 1725–1745 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Villegas, M., Paredes, R.: Comparison of Illumination Normalization Methods for Face Recognition. In: Third COST 275 Workshop Biometric on the Internet, pp. 27–30 (2005)Google Scholar
  5. 5.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Ekenel, H.K., Stiefelhagen, R.: Local Appearance Based Face Recognition using Discrete Cosine Transform. In: 13th European Signal Processing Conference (EUSIPCO), Turkey (2005)Google Scholar
  7. 7.
    Marcel, S., Rodriguez, Y., Heusch, G.: On the Recent Use of Local Binary Patterns for Face Authentication. International Journal on Image and Video Processing Special Issue on Facial Image Processing (2007)Google Scholar
  8. 8.
    Heusch, G., Rodriguez, Y., Marcel, S.: Local Binary Patterns as an Image Preprocessing for Face Authentication. In: IEEE International Conference on Automatic Face and Gesture Recognition (2006)Google Scholar
  9. 9.
    Chen, W., Er, M.J., Wu, S.: Illumination Compensation and Normalization for Robust Face Recognition Using Discrete Cosine Transform in Logarithm Domain. IEEE Transactions on Systems, Man and Cybernetics- Part B 36(2), 458–466 (2006)CrossRefGoogle Scholar
  10. 10.
    Marcel, S., Keomany, J., Rodriguez, Y.: Robust-to-illumination face localisation using Active Shape Models and Local Binary Patterns. IDIAP Research Report 47 (2006)Google Scholar
  11. 11.
    Hafed, Z.M., Levine, M.D.: Face Recognition Using the Discrete Cosine Transform. International Journal of Computer Vision 43(3), 167–188 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 643–660 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Heydi Méndez-Vázquez
    • 1
  • Edel García-Reyes
    • 1
  • Yadira Condes-Molleda
    • 1
  1. 1.Pattern Recognition DepartmentAdvanced Technologies Application CenterSiboneyCuba

Personalised recommendations