Pattern Recognition Methods for Querying and Browsing Technical Documentation

  • Karl Tombre
  • Bart Lamiroy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)


Graphics recognition deals with the specific pattern recognition problems found in graphics-rich documents, typical technical documentation of all kinds. In this paper, we propose a short journey through 20 years of involvement and contributions within this scientific community, and explore more precisely a few interesting issues found when the problem is to browse, query and navigate in a large and complex set of technical documents.


graphics recognition symbol recognition document analysis information spotting 


  1. 1.
    Mori, S., Suen, C.Y., Yamamoto, K.: Historical Review of OCR Research and Development. Proceedings of the IEEE 80(7), 1029–1058 (1992)CrossRefGoogle Scholar
  2. 2.
    Tang, Y.Y., Lee, S.W., Suen, C.Y.: Automatic Document Processing: A Survey. Pattern Recognition 29(12), 1931–1952 (1996)CrossRefGoogle Scholar
  3. 3.
    Nagy, G.: Twenty Years of Document Image Analysis in PAMI. IEEE Transactions on PAMI 22(1), 38–62 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Smith, R.W.: Computer Processing of Line Images: A Survey. Pattern Recognition 20(1), 7–15 (1987)CrossRefGoogle Scholar
  5. 5.
    Tombre, K.: Ten Years of Research in the Analysis of Graphics Documents: Achievements and Open Problems. In: Proceedings of 10th Portuguese Conference on Pattern Recognition, Lisbon, Portugal, pp. 11–17 (March 1998)Google Scholar
  6. 6.
    Tombre, K.: Finding and Coding Graphics in a Composite Document. In: Proceedings of 5th Scandinavian Conference on Image Analysis, Stockholm (Sweden), pp. 589–596 (1987)Google Scholar
  7. 7.
    Vaxivière, P., Tombre, K.: Subsampling: A Structural Approach to Technical Document Vectorization. In: Dori, D., Bruckstein, A. (eds.) Shape, Structure and Pattern Recognition (Post-proceedings of IAPR Workshop on Syntactic and Structural Pattern Recognition, Nahariya, Israel), pp. 323–332. World Scientific, Singapore (1995)Google Scholar
  8. 8.
    Tombre, K., Ah-Soon, C., Dosch, P., Habed, A., Masini, G.: Stable, robust and off-the-shelf methods for graphics recognition. In: Proceedings of the 14th International Conference on Pattern Recognition, Brisbane (Australia), pp. 406–408 (August 1998)Google Scholar
  9. 9.
    Tombre, K., Ah-Soon, C., Dosch, P., Masini, G., Tabbone, S.: Stable and robust vectorization: How to make the right choices. In: Chhabra, A.K., Dori, D. (eds.) GREC 1999. LNCS, vol. 1941, pp. 3–18. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Hilaire, X., Tombre, K.: Robust and Accurate Vectorization of Line Drawings. IEEE Transactions on PAMI 28(6), 890–904 (2006)CrossRefGoogle Scholar
  11. 11.
    Fletcher, L.A., Kasturi, R.: A robust algorithm for text string separation from mixed text/graphics images. IEEE Transactions on PAMI 10(6), 910–918 (1988)CrossRefGoogle Scholar
  12. 12.
    Tombre, K., Tabbone, S., Pélissier, L., Lamiroy, B., Dosch, P.: Text/graphics separation revisited. In: Lopresti, D.P., Hu, J., Kashi, R.S. (eds.) DAS 2002. LNCS, vol. 2423, pp. 200–211. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Antoine, D., Collin, S., Tombre, K.: Analysis of Technical Documents: The REDRAW System. In: Baird, H.S., Bunke, H., Yamamoto, K. (eds.) Structured Document Image Analysis, pp. 385–402. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  14. 14.
    Vaxivière, P., Tombre, K.: Celesstin: CAD Conversion of Mechanical Drawings. IEEE Computer Magazine 25(7), 46–54 (1992)CrossRefGoogle Scholar
  15. 15.
    Ah-Soon, C., Tombre, K.: Architectural Symbol Recognition Using a Network of Constraints. Pattern Recognition Letters 22(2), 231–248 (2001)CrossRefzbMATHGoogle Scholar
  16. 16.
    Dosch, P., Tombre, K., Ah-Soon, C., Masini, G.: A complete system for analysis of architectural drawings. International Journal on Document Analysis and Recognition 3(2), 102–116 (2000)CrossRefGoogle Scholar
  17. 17.
    Tabbone, S., Wendling, L., Tombre, K.: Matching of Graphical Symbols in Line-Drawing Images Using Angular Signature Information. International Journal on Document Analysis and Recognition 6(2), 115–125 (2003)CrossRefGoogle Scholar
  18. 18.
    Tabbone, S., Wendling, L., Salmon, J.P.: A new shape descriptor defined on the Radon transform. Computer Vision and Image Understanding 102(1), 42–51 (2006)CrossRefGoogle Scholar
  19. 19.
    Sayre, K.M.: Machine recognition of handwritten word: A project report. Pattern Recognition 5(3), 213–228 (1973)CrossRefGoogle Scholar
  20. 20.
    Lamiroy, B., Gaucher, O., Fritz, L.: Robust Circle Detection. In: Proceedings of 9th International Conference on Document Analysis and Recognition, Curitiba (Brazil), pp. 526–530 (2007)Google Scholar
  21. 21.
    Manmatha, R., Rothfeder, J.L.: A Scale Space Approach for Automatically Segmenting Words from Historical Handwritten Documents. IEEE Transactions on PAMI 27(8), 1212–1225 (2005)CrossRefGoogle Scholar
  22. 22.
    Leydier, Y., Lebourgeois, F., Emptoz, H.: Text search for medieval manuscript images. Pattern Recognition 40(12), 3552–3567 (2007)CrossRefzbMATHGoogle Scholar
  23. 23.
    Rath, T.M., Manmatha, R.: Word spotting for historical documents. International Journal on Document Analysis and Recognition 9(2–4), 139–152 (2007)CrossRefGoogle Scholar
  24. 24.
    Konidaris, T., Gatos, B., Ntzios, K., Pratikakis, I., Theodoridis, S., Perantonis, S.J.: Keyword-guided word spotting in historical printed documents using synthetic data and user feedback. International Journal on Document Analysis and Recognition 9(2–4), 167–177 (2007)CrossRefGoogle Scholar
  25. 25.
    Coüasnon, B., Camillerapp, J., Leplumey, I.: Access by content to handwritten archive documents: generic document recognition method and platform for annotations. International Journal on Document Analysis and Recognition 9(2–4), 223–242 (2007)CrossRefGoogle Scholar
  26. 26.
    Li, Y., Wang, Z., Zeng, H.: Correlation Filter: An Accurate Approach to Detect and Locate Low Contrast Character Strings in Complex Table Environment. IEEE Transactions on PAMI 26(12), 1639–1644 (2004)CrossRefGoogle Scholar
  27. 27.
    Xiao, Y., Yan, H.: Location of title and author regions in document images based on the Delaunay triangulation. Image and Vision Computing 22(4), 319–329 (2004)CrossRefGoogle Scholar
  28. 28.
    Zheng, Y., Li, H., Doermann, D.: Machine Printed Text and Handwriting Identification in Noisy Document Images. IEEE Transactions on PAMI 26(3), 337–353 (2004)CrossRefGoogle Scholar
  29. 29.
    Syeda-Mahmood, T.: Indexing of Technical Line Drawing Databases. IEEE Transactions on PAMI 21(8), 737–751 (1999)CrossRefGoogle Scholar
  30. 30.
    Najman, L., Gibot, O., Barbey, M.: Automatic Title Block Location in Technical Drawings. In: Proceedings of 4th IAPR International Workshop on Graphics Recognition, Kingston, Ontario (Canada), pp. 19–26 (September 2001)Google Scholar
  31. 31.
    Samet, H., Soffer, A.: MARCO: MAp Retrieval by Content. IEEE Transactions on PAMI 18(8), 783–798 (1996)CrossRefGoogle Scholar
  32. 32.
    Locteau, H., Adam, S., Trupin, E., Labiche, J., Héroux, P.: Symbol Spotting using Full Visibility Graph Representation. In: 7th IAPR International Workshop on Graphics Recognition, Curitiba (Brazil) (September 2007)Google Scholar
  33. 33.
    Rusiñol, M., Lladós, J.: Symbol Spotting in Technical Drawings Using Vectorial Signatures. In: Liu, W., Lladós, J. (eds.) GREC 2005. LNCS, vol. 3926, pp. 35–46. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  34. 34.
    Zuwala, D., Tabbone, S.: A Method for Symbol Spotting in Graphical Documents. In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 518–528. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  35. 35.
    Zuwala, D., Rendek, J.: Browsing graphics without prior knowledge. In: Proceedings of the 18th International Conference on Pattern Recognition, Hong-Kong (China), pp. 735–738 (2006)Google Scholar
  36. 36.
    Ishikawa, Y., Subramanya, R., Faloutsos, C.: MindReader: Query databases through multiple examples. In: Very Large Databases (1998)Google Scholar
  37. 37.
    Rui, Y., Huang, T.: Optimizing Learning in Image Retrieval. In: Computer Vision and Pattern Recognition, pp. 1236 (June 2000)Google Scholar
  38. 38.
    Rui, Y., Huang, T., Mehrotra, S.: Content-Based Image Retrieval with Relevance Feedback in MARS. In: Proceedings of IEEE International Conference on Image Processing, pp. 815–818 (1997)Google Scholar
  39. 39.
    Su, Z., Zhang, H., Ma, S.: Using Bayesian Classifier in Relevant Feedback of Image Retrieval. In: 12th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2000) (2000)Google Scholar
  40. 40.
    Zhang, L., Lin, F., Zhang, B.: Support vector machine learning for image retrieval. In: Proceedings of IEEE International Conference on Image Processing, pp. 721–724 (2001)Google Scholar
  41. 41.
    Onada, T., Murata, M., Yamada, S.: Relevance feedback document retrieval using support vector machines. In: Proceedings of International Joint Conference on Neural Networks (IJCNN 2003), pp. 1757–1762 (2003)Google Scholar
  42. 42.
    MacArthur, S.D., Brodley, C.E., Shyu, C.: Relevance Feedback Decision Trees in Content-Based Image Retrieval. In: IEEE Workshop on Content-based Access of Image and Video Libraries, p. 68 (2000)Google Scholar
  43. 43.
    Wang, T., Rui, Y., Hu, S., Sun, J.: Adaptive Tree Similarity for Image Retrieval. Multimedia Systems 9, 131–143 (2003)CrossRefGoogle Scholar
  44. 44.
    Giacinto, G., Roli, F.: Bayesian relevance feedback for content-based image retrieval. Pattern Recognition 37(7), 1499–1508 (2004)CrossRefzbMATHGoogle Scholar
  45. 45.
    Rendek, J., Lamiroy, B., Tombre, K.: A Few Step Towards On-the-Fly Symbol Recognition with Relevance Feedback. In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 604–615. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  46. 46.
    Matsakis, P., Wendling, L.: A New Way to Represent the Relative Position Between Areal Objects. IEEE Transactions on PAMI 21(7), 634–643 (1999)CrossRefGoogle Scholar
  47. 47.
    Matsakis, P., Keller, J.M., Sjahputera, O., Marjamaa, J.: The Use of Force Histograms for Affine-Invariant Relative Position Description. IEEE Transactions on PAMI 26(1), 1–18 (2004)CrossRefGoogle Scholar
  48. 48.
    Bloch, I.: Fuzzy Spatial Relationships for Image Processing and Interpretation: a Review. Image and Vision Computing (23), 99–110 (2005)Google Scholar
  49. 49.
    Bennett, B., Agarwal, P.: Semantic categories underlying the meaning of ‘place’. In: Spatial Information Theory: Proceedings of the 8th International Conference (COSIT 2007). LNCS, vol. 4746. Springer, Heidelberg (2007)Google Scholar
  50. 50.
    Ganter, B., Stumme, G., Wille, R.(eds.): Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 1–33. Springer, Heidelberg (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Karl Tombre
    • 1
  • Bart Lamiroy
    • 2
  1. 1.LORIA – INRIAVillers-lès-NancyFrance
  2. 2.LORIA – Nancy UniversitéVandœuvre-lès-Nancy CEDEXFrance

Personalised recommendations