Advertisement

Extended Recursive Filtering Estimation of Detector Offset Nonuniformity in Infrared Imaging Systems

  • César San-Martin
  • Jorge Pezoa
  • Sergio Torres
  • Pablo Meza
  • Diana Gutierrez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

In [1] we presented a recursive filter to estimate the detector offset nonuniformity (NU) noise present in infrared (IR) imaging systems. Such a filter was derived considering an estimation time-window short enough so that the offset NU can be regarded as a constant in noise. Since the offset NU is non-stationary, upon the arrival of new blocks of IR data new estimates of the offset NU have to be computed. In this paper, this recursive filter is extended by adding to the so-called intra-block processing (where offset NU is a constant) an inter-block processing algorithm. The inter-block processing algorithm considers the time varying effect in the offset NU and models it as a discrete-time Gauss-Markov random process. So, the extended filter is designed to compensate continuously for the NU when new blocks of frames arrive. In addition, the theoretical analysis of the estimator provides us expressions for selecting the appropriate parameters required by the algorithm. The ability of the method to compensate for the offset NU is demonstrated by employing several mid-wavelength IR video sequences.

Keywords

Image Sequence Processing Infrared Focal Plane Arrays Recursive Filtering Nonuniformity Correction Method 

References

  1. 1.
    San Martin, C., Torres, S.: Statistical Recursive Filtering Estimation of Detector Offset Nonuniformity in Infrared Imaging System. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 464–473. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Scribner, D., Sarkady, K., Kruer, M.: Adaptive Nonuniformity Correction for Infrared Focal Plane Arrays using Neural Networks. Proc. of SPIE 1541, 100–109 (1991)CrossRefGoogle Scholar
  3. 3.
    Scribner, D., Sarkady, K., Kruer, M.: Adaptive Retina-like Preprocessing for Imaging Detector Arrays. In: Proc. IEEE Int. Conf. on Neural Networks, vol. 3, pp. 1955–1960 (1993)Google Scholar
  4. 4.
    Torres, S., Vera, E., Reeves, R., Sobarzo, S.: Adaptive Scene-Based Nonuniformity Correction Method for Infrared Focal Plane Arrays. Proc. of SPIE 5076, 130–139 (2003)CrossRefGoogle Scholar
  5. 5.
    Torres, S., Hayat, M.: Kalman Filtering for Adaptive Nonuniformity Correction in Infrared Focal Plane Arrays. The JOSA-A The Opt. Soc. of America 20, 470–480 (2003)CrossRefGoogle Scholar
  6. 6.
    Torres, S., Pezoa, J., Hayat, M.: Scene-based Nonuniformity Correction for Focal Plane Arrays Using the Method of the Inverse Covariance Form. Applied Optics Inf. Proc. The Opt. Soc. of America 42, 5872–5881 (2003)Google Scholar
  7. 7.
    Pezoa, J., Hayat, M., Torres, S., Rahman, M.: Multimodel Kalman Filtering for Adaptive Nonuniformity Correction in Infrared Sensors. The JOSA-A The Opt. Soc. of America 23, 1282–1291 (2006)CrossRefGoogle Scholar
  8. 8.
    Averbuch, A., Liron, G., Bobrovsky, B.: Scene Based Non-uniformity Correction in Thermal Images Using Kalman Filter. Elsevier Image and Vision Computing 25, 833–851 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • César San-Martin
    • 1
  • Jorge Pezoa
    • 2
  • Sergio Torres
    • 2
  • Pablo Meza
    • 1
  • Diana Gutierrez
    • 3
  1. 1.Dep. of Electrical Eng.University of La FronteraTemucoChile
  2. 2.Dep. of Electrical Eng.University of ConcepciónConcepciónChile
  3. 3.Department of Biomedical Eng.Manuela Beltran UniversityBogotáColombia

Personalised recommendations