Advertisement

Computer Aided Diagnosis System to Detect Breast Cancer Pathological Lesions

  • Yosvany López
  • Andra Novoa
  • Miguel A. Guevara
  • Nicolás Quintana
  • Augusto Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

Breast cancer is one of the most frequent forms of women’s cancer over the world. Studies of the World Health Organization (WHO) reported 1,151,298 cases in 2002. A reliable Computer-Aided-Diagnosis (CAD) system for automated detection/classification of pathological lesions is very useful and helpful, providing a valuable “second opinion” to medical personnel. In this work, we describe a new CAD system to diagnose six mammography pathological lesions classes (calcifications, well-defined/circumscribed masses, spiculated masses, ill-defined masses, architectural distortions and asymmetries) as benign or malignant tissues. Two different Artificial Neural Networks models: Feedforward Backpropagation and Generalized Regression were tested statistically with a precision of 94.0% and 80.0% of true positives, respectively. This CAD system was validated successfully on the MiniMammographic Image Analysis Society (MiniMIAS) database, with a dataset formed by 100 images. The CAD system performance shows similar or better classification results compared with others available methods.

Keywords

Breast cancer pathological lesion mammography images CAD system artificial neural networks 

References

  1. 1.
    Nishikawa, R.M., Schmidt, R.A., Papaioannou, J., Onsis, R., Haldemann Heusler, R.A., Giger, M.L., et al.: Performance of a prototype clinical intelligent mammography workstation, 1996. In: Doi, K., Nishikawa, R.M., Schmith, R.A. (eds.) Digital mammography, pp. 93–96. Elsevier, Amsterdam (1996)Google Scholar
  2. 2.
    Roehrig, J., Doi, T., Hasegawa, A., Hunt, B., Marshall, J., Romsdahl, H., et al.: Clinical results with R2 ImageChecker system. In: Karssemeijer, N., Hendriks, J., van Erning, L. (eds.) Digital mammography, pp. 395–400. Kluwer Academic Publishers, Dordrecht (1998)CrossRefGoogle Scholar
  3. 3.
    Lo*, S.-C.B., Li, H., Wang, Y., Kinnard, L., Freedman, M.T.: A Multiple Circular Path Convolution Neural Network System for Detection of Mammographic Masses. IEEE Transactions On Medical Imaging 21, 150–158 (2002)CrossRefGoogle Scholar
  4. 4.
    Sepehr, A., Jamarani, M.H., Rezai-rad, B.G., Behnam, C.H.: A Novel Method for Breast Cancer Prognosis Using Wavelet Packet Based Neural Network. In: IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, pp. 3414–3417 (2005)Google Scholar
  5. 5.
    Joo, S., Yang, Y.S., Moon, W.K., Kim, H.C.: Computer-Aided Diagnosis of Solid Breast Nodules: Use of an Artificial Neural Network Based on Multiple Sonographic Features. IEEE Transactions On Medical Imaging 23, 1292–1300 (2004)CrossRefGoogle Scholar
  6. 6.
    Campos, L.F.A., Silva, A.C., Barros, A.K.: Diagnosis of Breast Cancer in Digital Mammograms Using Independent Component Analysis and Neural Networks. In: Sanfeliu, A., Cortés, M.L. (eds.) CIARP 2005. LNCS, vol. 3773, pp. 460–469. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In: International Joint Conference on Artificial Intelligence (IJCAI) (1995)Google Scholar
  8. 8.
    Kuncheva, L.I.: Combining Pattern Classifiers. Wiley-Interscience, Chichester (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Pisano, E.D., Yaffe, M.J., Kuzmiak, C.M.: Digital Mammography. Lippincott Williams & Wilkins (2004)Google Scholar
  10. 10.
    Artur Chodorowski, U.M., Langille, M., Hamarneh, G.: Color Lesion Boundary Detection Using Live Wire. Medical Imaging 5747, 1589–1596 (2005)Google Scholar
  11. 11.
    Jianming Liang, T.M.: Demetri Terzopoulos: United Snakes. Medical Image Analysis 10, 215–233 (2006)CrossRefGoogle Scholar
  12. 12.
    Karsten Rodenacker, E.B.: A feature set for cytometry on digitized microscopic images. Analytical Cellular Pathology 25, 1–36 (2003)CrossRefGoogle Scholar
  13. 13.
    López, Y., Novoa, A., Guevara, M.A., Silva, A.: Breast cancer diagnosis based on a suitable combination of deformable models and artificial neural networks techniques. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 803–811. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Tüba Kiyan, T.Y.: Breast Cancer Diagnosis using Statistical Neural Networks. Journal of Electrical & Electronics Engineering 4, 1149–1153 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yosvany López
    • 1
  • Andra Novoa
    • 1
  • Miguel A. Guevara
    • 1
    • 2
  • Nicolás Quintana
    • 1
  • Augusto Silva
    • 2
  1. 1.Center for Advanced Computer Sciences TechnologiesCiego de Ávila UniversityCuba
  2. 2.IEETAAveiro UniversityPortugal

Personalised recommendations